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Abstract

We present a simple formalism for the evolution of timelike jets in which tree-level matrix
element corrections can be systematically incorporated, up to arbitrary parton multiplicities and
over all of phase space, in a way that exponentiates the matching corrections. The scheme is
cast as a shower Markov chain which generates one single unweighted event sample, that can
be passed to standard hadronization models. Remaining perturbative uncertainties are estimated
by providing several alternative weight sets for the same events, at a relatively modest additional
overhead. As an explicit example, we considerZ → qq̄ evolution with unpolarized, massless
quarks and include several formally subleading improvements as well as matching to tree-level
matrix elements throughα4

s
. The resulting algorithm is implemented in the publicly available

V INCIA plugin1 to the PYTHIA 8 event generator.

1 Introduction

The experimental program now underway at the Large Hadron Collider (LHC) will make extensive
demands on theorists’ ability to predict background processes, governed by Standard-Model physics.
These predictions require perturbative computations in the electroweak sector, and call on both pertur-
bative and nonperturbative physics in quantum chromodynamics. The dependence on nonfactorized
and nonperturbative QCD is not yet amenable to a first-principles calculation, and must therefore rely
on experimental measurements of the parton distribution functions, as well as models for hadroniza-
tion and the underlying event. An appropriate choice of observables — infrared- and collinear-safe
ones — can minimize (but not eliminate) the dependence on these models. The factorizable perturba-
tive component of the backgrounds can be computed systematically.

An essential class of observables for new-physics searchesare multi-jet differential cross sec-
tions, typically with events also required to include decayproducts of one or more electroweak vector
bosons. Jet shapes and jet substructure observables are also important, both from a calibration point
of view as well as to search for decays of boosted objects [1, 2]. The two basic approaches to com-
puting perturbative contributions are via a fixed-order expansion in powers of the strong couplingαs,
and in a parton-shower approach which resums leading (LL) and possibly next-to-leading logarithms
(NLL) of large ratios of scales multiplying the strong coupling. The former approach can be carried
out using widely-available tools to leading order (LO) inαs for essentially any jet multiplicity, for
a growing list of processes to next-to-leading order (NLO),and for a select list to next-to-next-to-
leading order (NNLO). It sacrifices a detailed picture of each event, and of jet substructure, in favor of
of a systematically improved description of the “hard” or wide-angle radiation reflected in the several

1Available from the web site:http://projects.hepforge.org/vincia/
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jets. The parton-shower approach (see [3] for a recent review) favors developing an accurate picture
of the “soft” or “collinear” radiation that dresses the hardevent, thereby providing an event-by-event
description of jet substructure as well as allowing the incorporation of a nonperturbative model for the
final-state hadrons.

From a theoretical point of view, the two approaches correspond to summing up different but
overlapping sets of contributions to the short-distance perturbative matrix elements. Simply adding
the two would yield an overcounting of the common contributions, and the separation of the two
sets is somewhat delicate. The recent decade has seen the appearance of a number of strategies
for combining or “matching” these two approaches for general final states. These can be broadly
described as “slicing”, “subtraction”, or “unitarity” approaches.

In a slicing approach, the phase space for multiple emissions is separated into two regions. In
one, the calculation uses the leading-order matrix element; in the other, the leading-log approxima-
tion as given by a parton shower. The schemes introduced by Mangano (MLM) in the days of the top
quark discovery and formalized later [4, 5], and by Catani, Krauss, Kuhn, and Webber (CKKW) [6]
are examples of a slicing approach. The CKKW approach has been implemented within the SHERPA

framework [7]; the MLM one, using ALPGEN [8] interfaced [9, 10] to both PYTHIA [11] and HER-
WIG [12]. Refined versions of the CKKW method have since been introduced by Lönnblad [13, 14]
in the context of the color-dipole model [15, 16] and implemented in the ARIADNE generator [17],
as well as by Mrenna and Richardson [18] using MADGRAPH [19], again interfaced to HERWIG and
PYTHIA . The original strategy [20, 21] for matching in HERWIG, for one emission beyond a basic
process, also follows this approach and may be seen as a precursor to the CKKW formalism.

In a subtractive approach, the shower approximation is subtracted from the exact fixed-order ma-
trix element, and two classes of events are generated: standard events and counter-events. The latter
may have negative weights. The MC@NLO program built on HERWIG is an example of subtrac-
tive matching to one loop [22]. Other subtraction implementations include a SHERPA implementa-
tion [23] and one by Dinsdale, Ternick, and Weinzierl (DTW) [24] based on the Catani-Seymour
(CS) method [25] of fixed-order calculations. Finally, the MENLOPS scheme [26] probably repre-
sents the most advanced current matching method, combiningPOWHEG (a unitarity-based variant of
MC@NLO, see below) with a slicing-based matching for multijet emissions.

Note, however, that in both slicing and subtraction, any subleading divergencies in the matched
matrix elements beyond one additional parton are not regulated by the (LL) shower, and hence all the
multileg schemes — MLM, CKKW, and MENLOPS — are forced to introduce a “matching scale”
below which only the pure LL shower is used. While such schemes therefore guarantee the rates of
hard additional jets to be correct to LO, the same is not guaranteed for jet substructure, which can be
explicitly sensitive to multiparton correlations below the matching scale and beyond LL [27].

In a unitarity approach, to maintain a sequence of unit-weight events, the selection of branching
events is modified by a veto depending on the ratio of the exactmatrix element to the shower approxi-
mation. Since the correction is applied on the splitting probability itself, it is automatically resummed
to all orders by the shower Sudakovs, with real and virtual corrections canceling order by order in per-
turbation theory. Indeed, the original approach to matching, carried out for one additional emission
beyond a basic process in PYTHIA [28, 29], follows this approach. It is also used in POWHEG [30],
there combined with a subtractive matching to NLO. The proposal of matching by Sudakov reweight-
ing by Nagy and Soper [31] is also within this class. However,the unitary approach to matching has
so far only been worked out for a single emission. We shall here generalize it to an arbitrary number
of emissions, arriving at the equivalent to MENLOPSbut based on unitarity instead of slicing for the
additional emissions. This will allow us to extend the matching over all of phase space, and should
therefore result in a more accurate modeling not only of jet rates but also of jet substructure.
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Most showers, with the exception of ARIADNE and the Winter–Krauss shower [32], are based on
collinear factorization, which is to say1 → 2 branching in shower evolution. (PYTHIA 8 combines
a 1 → 2 splitting probability with a2 → 3 phase-space mapping.) In the present paper, we continue
the development of a leading-log (LL) parton shower [33] based on dipole antennæ, that is2 → 3
branching. We choose a simpler context than hadron collisions, that of electron–positron collisions.
This allows us to set aside the questions of initial-state emission as well as those of the underlying
event.

In sec. 2, we describe in greater detail the ingredients needed for such a shower, as well as our
normalization conventions, and compare the origins of different singularities and corresponding log-
arithms in different shower formalisms. We also discuss thedifferent matching approaches in more
detail. In sec. 3, we discuss the evolution integral, and show how to cast it in a general form whose
specializations correspond to a wide variety of interesting evolution variables. We then solve the re-
sulting evolution equation. In sec. 4, we discuss the showeralgorithm, as well as improvements that
can be made to its logarithmic accuracy. In sec. 5, we discussthe details of matching the dipole-
antenna shower to tree-level matrix elements, at both leading and subleading color. The procedure
we use to evaluate the remaining perturbative uncertainties is described in sec. 6, and in sec. 7, we
comment on hadronization; in sec. 8, we compare the results of running the unitarity-based approach
implemented in VINCIA to LEP data and to PYTHIA 8. We make some concluding remarks in sec. 9.

2 Nomenclature and Conventions

In this section, we introduce the basic elements of our perturbative formalism, which is largely based
on ref. [33]. First, in sec. 2.1, we illustrate how the KLN theorem may be used to rewrite the coeffi-
cients of perturbation theory as the expansion of an all-orders Markov chain, using NLO as an explicit
example. Then, in sec. 2.2, we briefly describe each of the ingredients that enter our dipole-antenna
shower formalism.

2.1 Perturbation Theory with Markov Chains

Consider the Born-level cross section for an arbitrary hardprocess,H, differentially in an arbitrary
infrared-safe observableO,

dσH
dO

∣∣∣∣
Born

=

∫
dΦH |M (0)

H |2 δ(O −O({p}H)) , (1)

where the integration runs over the full final-state on-shell phase space ofH (this expression and
those below would also apply to hadron collisions were we to include integrations over the parton
distribution functions in the initial state), and theδ function projects out a 1-dimensional slice defined
byO evaluated on the set of final-state momenta which we denote{p}H (without theδ function, the
integration over phase space would just give the total crosssection, not the differential one).

To make the connection to parton showers, and to discuss all-orders resummations in that context,
we may insert an operator,S, that acts on the Born-level final statebeforethe observable is evaluated,
i.e.,

dσH
dO

∣∣∣∣S
=

∫
dΦH |M (0)

H |2 S({p}H ,O) . (2)

Formally, this operator — the evolution operator — will be responsible for generating all (real and
virtual) higher-order corrections to the Born-level expression. The measurementδ function appear-
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ing explicitly in eq. (1) is now implicit inS. (Ultimately, non-perturbative corrections can also be
included.)

Algorithmically, we shall castS as an iterative Markov chain, with an evolution parameter that
formally represents the factorization scale of the event, below which all structure is summed over
inclusively. As the Markov chain develops, the evolution parameter will go towards zero, and the
event structure will become more and more exclusively resolved. A transition from a perturbative
evolution to a non-perturbative one can also be inserted, atan appropriate scale, typically around
1 GeV. This scale thus represents the lowest perturbative scale that can appear in the calculations,
with all perturbative corrections below it summed over inclusively.

It is instructive to begin by considering the first-order expansion the operator must have in order
to agree with NLO perturbation theory,

S(1)({p}H ,O) =

(
1 +

2Re[M
(0)
H M

(1)∗
H ]

|M (0)
H |2

)
δ(O −O({p}H))

+

∫
dΦH+1

dΦH

|M (0)
H+1|2

|M (0)
H |2

δ(O −O({p}H+1)) , (3)

with M (1)
H the one-loop amplitude and the ratiodΦH+1 /dΦH in the second line representing the

phase space of one additional final-state particle; we shallreturn to the associated factorization be-
low. The two correction terms are separately divergent and hence eq. (3) only has a symbolic formal
meaning. It requires a regulator for actual calculations. Introducing the factorization scale mentioned
above, and introducing ann+1→ nmapping of momenta by summing inclusively over all emissions
below it, we obtain, instead, the first-order expansion corresponding to an evolution from the starting
scale,s (the c.m. energy squared), down to the scaleQ2

E,

S(1)({p}H , s,Q2
E ,O) =


1 + 2Re[M

(0)
H M

(1)∗
H ]

|M (0)
H |2

+

∫ Q2
E

0

dΦH+1

dΦH

|M (0)
H+1|2

|M (0)
H |2


 δ(O −O({p}H))

+

∫ s

Q2
E

dΦH+1

dΦH

|M (0)
H+1|2

|M (0)
H |2

δ(O −O({p}H+1)) , (4)

where the factorization scale,QE (a.k.a. the “evolution scale”), separates resolved from unresolved
regions. This expression is well-defined if the functional form of QE properly separates singular
from non-singular regions, i.e., is “infrared sensible” [34]. (Corrections to this expression arising
from scales belowQE will be taken into account by eventually lettingQE → 0.) Due to the KLN
theorem [35], the real and virtual singularities must be equal and of opposite sign, thus we can rewrite

2Re[M
(0)
H M

(1)∗
H ]

|M (0)
H |2

= K
(1)
H −

∫ s

0

dΦH+1

dΦH

|M (0)
H+1|2

|M (0)
H |2

, (5)

whereK(1)
H is a non-singular function when the regulator is removed, allowing us to express eq. (4)

as

S(1)({p}H , s,Q2
E ,O) =


1 +K

(1)
H −

∫ s

Q2
E

dΦH+1

dΦH

|M (0)
H+1|2

|M (0)
H |2


 δ(O −O({p}H))

+

∫ s

Q2
E

dΦH+1

dΦH

|M (0)
H+1|2

|M (0)
H |2

δ(O −O({p}H+1)) . (6)
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In this form, the NLO correction to the total cross section isgiven solely by the termK(1)
H , with the

remaining terms having been written in an explicitly unitary construction.
We can also rewrite the exact ratio|MH+1|2/|MH |2 as a process-dependent term whose integral

is non-singular, plus a sum over universal singular ones,

dΦH+1

dΦH

|M (0)
H+1|2

|M (0)
H |2

=
dΦH+1

dΦH
K

(0)
H+1 +

∑

r

dΦ
[r]
H+1

dΦH
Sr , (7)

wherer runs over “radiators”, whose precise definition, such as partons or dipoles, depends on the
chosen decomposition of the singular structures in|MH+1|2, and the superscript[r] on the phase
space factors indicate that each radiator may in principle be associated with a different phase space
factorization.

By the simple rewritings above, we have now obtained a form ofthe expansion in which the singu-
larity and unitarity structure ofS are both explicitly manifest. Deviations from unitarity are associated
solely with the non-singular termK(1)

H , and deviations from the universal radiation functions areas-

sociated solely with the non-singular termK(0)
H+1. In both cases, the generalization to higher orders is

straightforward.
In traditional parton showers, all the non-singular terms are dropped, and henceonly the unitary

singular structure remains,

S(1)({p}H , s,Q2
E ,O) =


1−

∑

r

∫ s

Q2
E

dΦ
[r]
H+1

dΦH
Sr


 δ(O −O({p}H))

+
∑

r

∫ s

Q2
E

dΦ
[r]
H+1

dΦH
Sr δ(O −O({p}H+1)) . (8)

Exponentiating the leading singularities, we may replace them by the Sudakov factor,

∆({p}, s,Q2
j ) = exp


−

∑

r

∫ s

Q2
j

dΦ
[r]
H+1

dΦH
Sr


 . (9)

We thereby obtain the all-orders pure-shower Markov chain,

S({p}H , s,Q2
E ,O) = ∆({p}H , s,Q2

E) δ (O −O({p}H))︸ ︷︷ ︸
H + 0 exclusive aboveQE

+
∑

r

∫ s

Q2
E

dΦ
[r]
H+1

dΦH
Sr ∆({p}H , s,Q2

H+1) S({p}H+1, Q
2
H+1, Q

2
E ,O)

︸ ︷︷ ︸
H + 1 inclusive aboveQE

.
(10)

The shower may exponentiate the entire set of universal singular terms, or only a subset of them (for
example, the terms leading in the number of colorsNc). More on the Markov formalism can be found
in ref. [33]. We hope this brief introduction serves to put the developments below in context, and note
that we will return to the restoration of the finite terms in the section on matching.
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2.2 Dipole-Antenna Showers

In leading-log dipole-antenna showers, the fundamental step is a Lorentz invariant2 → 3 branching
process by which two on-shell “parent” partons are replacedby three on-shell “daughter” partons.
This2→ 3 process makes use of three ingredients:

1. An antenna functionthat captures the leading tree-level singularities of QCD matrix elements.
This is the equivalent of the splitting functions used in traditional parton showers, with some
important differences, as we discuss below.

2. A kinematics map, specifying how the post-branching momenta are related to the pre-branching
ones. This is the equivalent of the “recoil strategy” of traditional parton showers.

3. An antennaphase space— an exact, momentum-conserving and Lorentz-invariant factorization
of the pre- and post-branching phase spaces. Traditional parton showers, on the other hand, are
based on a phase-space factorization which is only exact in the collinear limit, and momentum
conservation may only be imposeda posteriori.

In the following paragraphs, we present the notation and normalization conventions that we shall use
in the rest of the article for each of these pieces.

Factorization: Labeling the three daughter partonsi, j, andk, we write the integral over a three-
body matrix element corresponding to that final state in factorized form as follows,

|M3(pi, pj , pk)|2dΦ3 = |M2(s)|2dΦ2
|M3(pi, pj , pk)|2
|M2(s)|2

dΦ3

dΦ2
, (11)

where the two-parton matrix element we have introduced corresponds to the “parent” configuration,
in which we label the partonsI andK. The branching process represented by this factorization is
thusIK → ijk, with total Lorentz invariantsijk = sIK = s. The |M3|2/|M2|2 factor in eq. (11)
represents the evolution kernel, whose (negative) exponential is the Sudakov form factor, cf. eq. (9).

Phase Space: The dipole-antennaphase-space measureis thus [33]

dΦ3

dΦ2
= dsij dsjk

dφ

2π

1

16π2
√
λ
(
s,m2

I ,m
2
K

) , (12)

where the Källén function,

λ(s,m2
I ,m

2
K) = s2 +m4

I +m4
K − 2sm2

I − 2sm2
K − 2m2

Im
2
K , (13)

in the denominator reduces to
√
λ = s for massless particles.

Antenna Function: The ratio of matrix elements appearing in the integrand of eq. (11) is then
decomposed into a symmetry factor, a coupling factor, a color factor, and anantenna function,

|M3(pi, pj, pk)|2
|M2(s)|2

= SIK→ijk g2 Cijk ā0ijk(s, sij, sjk) , (14)

whereS takes into account potential identical-particle factors as well as the possible presence of more
than one antenna in the parent (IK) configuration,g2 is the relevant coupling factor,Cijk is a color
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Figure 1: Contours of constant value of the antenna function, ā0ijk for qq̄ → qgq̄ derived fromZ decay
as function of the two phase-space invariants, with an arbitrary normalization and a logarithmic color
scale. Larger values are shown in lighter shades. The (single) collinear divergences sit on the axes,
while the (double) soft divergence sits at the origin.

factor, and̄a0ijk is a generic color- and coupling-stripped dipole-antenna function, with superscript0 to
denote a tree-level quantity. The three-particle matrix element is averaged azimuthally (overφ). Note
that our use of lower-case letters for the antenna function is intended to signify that it corresponds to
what is called asub-antennain ref. [36] for which lower-case letters are likewise used2.

For illustration, contours of constant value ofā0qgq̄(s, sqg, sgq̄) as derived fromZ decay are shown
in fig. 1, over the2 → 3 phase space, with an arbitrary normalization and a logarithmic color scale.
This function is calledA0

3 in ref. [36] and is identical to the radiation function used for qq̄ → qgq̄
splittings in ARIADNE. One clearly sees the large enhancements towards the edges of phase space,
with a double pole (the overlap of two singularities, usually called softand collinear) sitting at the
origin, and single singularities (softor collinear) localized on the axes.

Writing the coupling factor asg2 = 4παs and combining it with the phase space factor, eq. (12),
we have the following antenna function normalization

a0IK→ijk(s, sij, sjk) ≡
1√

λ
(
s,m2

I ,m
2
K

)
αs

4π
Cijk ā0ijk(s, sij , sjk) . (15)

That is, we use the notation̄a for the coupling- and color-stripped antenna function, andthe notation
a for the “dressed” antenna function, i.e., including its coupling, color, and phase-space prefactors.

Note thatg2×(phase-space normalization) leads to a factorαs/(4π) independently of the type of
branching. As we believe that the formalism becomes more transparent if the origin of each factor
is kept clear throughout, we shall therefore use this factorfor all branchings, instead of the more
traditional convention of usingαs/(2π) for some branchings andαs/(4π) for others. Obviously, this
convention choice will be compensated by our conventions for the color factors and antenna-function
normalizations, such that the final result remains independent of this choice.

2Thus, in the notation of ref. [36], our dipole-antenna functions would bēa0
3 = A0

3, d̄03 = d03, ē03 =
1
2
E0

3 , f̄0
3 = f0

3 , and
ḡ03 =

1
2
G0

3.
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Color Factor: For color factors, we shall systematically adopt a convention optimized for shower
applications, in which the color factor tends toNC in the large-NC limit whenever a new color line is
created (rather than toNC/2 as is the case forCF in the standard normalization) and to unity when no
new color lines are created (rather than1/2 which is the case forTR in the standard normalization).
That is, we shall use

CA = NC = 3 , (16)

ĈF =
N2

C − 1

NC
= 8/3 = 2CF , (17)

T̂R = 1 = 2TR . (18)

With all other normalizations fixed, the normalization of the antenna functions is now also unique.
Indeed, with this choice, the radiation functions will turnout to be normalized in a way that makes
their similarities more readily apparent. Another useful thing about this normalization is that the color
factors now have a very simple interpretation. They providea one-to-one count of the number of new
color degrees of freedom that have been summed over in any given process. This gives a simpler
counting and interpretation than in the standard normalization. Of course, the fact that there are only
N2

C − 1 = 8 gluons, leads to corrections of order1/N2
C , and here again it is trivial to let the “naı̈ve”

color-line creation factorCA be replaced bŷCF for, e.g.,qq̄ → qgq̄, without artificially having to
compensate by a factor of 2 in the radiation function — the eikonal part of the radiation function now
remains invariant (as noted above in the discussion of the normalization of the radiation functions),
and the difference in color factor is explicitly subleading, as it should be. A final argument is the
question of which color factor to use, e.g., for aqg → qgg emission. In the standard normalization,
this could lead to confusion, since one parent would seem to “want” CF and the otherCA, which
differ by a more than a factor of 2. In the normalization used here, the difference between̂CF and
CA is explicitly subleading in color, and hence it is clear thateither of them could be used without
any possibility for ambiguity at the leading-color (LC) level, again placing the proper difference in
the proper place.

To preempt confusion and illustrate how simple the translation between these convention choices
is, consider the dipole-antenna function for gluon emission off a qq̄ pair used in the ARIADNE gener-
ator [17]. As the symmetry factor is unity, this is just the matrix element squared forZ → 3 divided
by the one forZ → 2 multiplied by the aforementioned phase-space factor,

|M(Z → qgq̄)|2
16π2s|M(Z → qq̄)|2 =

1

s

2αs

3π

(1− yij)2 + (1− yjk)2
yijyjk

, (19)

whereyij = sij/s = 1− xk. The factor2αs/(3π) in the first equation can be rewritten in two ways

2αs

3π
=

4

3

αs

2π
= CF

αs

2π
or

2αs

3π
=

8

3

αs

4π
= ĈF

αs

4π
; (20)

it is purely for our own convenience that we choose the latternormalization.
In a similar vein one could rewrite the DGLAP splitting kernels [37], which are used in traditional

parton showers [11,12,38,39], as

P 0
qI→qigj(z)

sij
=

1

sij

αs

2π
CF

1 + z2

1− z =
1

s

αs

4π
ĈF

1 + z2

yij(1− z)
, (21)

P 0
gI→gigj(z)

sij
=

1

sij

αs

2π
NC

(1− z(1− z))2
z(1− z) =

1

s

αs

4π
2NC

(1− z(1− z))2
yijz(1− z)

, (22)
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HI IK KL

H I K L

Coll(I) Soft(IK)

Parton Shower (DGLAP) aI aI + aK

Coherent Parton Shower (HERWIG [12,40],PYTHIA 6 [11]) ΘIaI ΘIaI +ΘKaK

Global Dipole-Antenna (ARIADNE [17], GGG [36], WK [32],
V INCIA )

aIK + aHI aIK

Sector Dipole-Antenna (LP [41],V INCIA ) ΘIKaIK +ΘHIaHI aIK

Partitioned-Dipole Shower (SK [23], NS [42], DTW [24],
PYTHIA 8 [38], SHERPA)

aI,K + aI,H aI,K + aK,I

Figure 2: Schematic overview of how the full collinear singularity of partonI and the soft singularity
of theIK pair, respectively, originate in different shower types. (ΘI andΘK represent angular vetos
with respect to partonsI andK, respectively, andΘIK represents a sector phase-space veto, see text.)

where the gluon radiation function has absorbed a factor of 2on the r.h.s. of the last line, due to the
normalization choice. We note that, although these expressions look quite different from the dipole
formula, eq. (19), they lead to identical singularities. This was shown in ref. [29] by identifyingz as
the Lorentz invariant energy fraction taken by the quark,z = xi/(xi + xk), and adding the radiation
from the antiquark,̄qK → gj q̄k.

Shared Singularities: This examination of the different presentations of singularities brings us to
the issue of “shared singularities”. In traditional partonshowers, as we have just seen, the full leading-
log radiation pattern can only be obtained after summing over pairs of partons (which each radiate as
independent monopoles), and care must be taken in the construction of the shower to make this sum
approximately coherent to reproduce the correct singular behavior for soft wide-angle radiation. This
dipolesingularity is the simplest case of what we shall generally refer to as a shared — or multipole
— singularity below; radiation whose full singularity structure (in a particular phase-space limit) can
only be recovered after summing over two or more radiators.

A chain of such uniquely labeled and color ordered gluons, which could, e.g., represent a shower
“event record” at a given point during its evolution, is illustrated in fig. 2. Below the schematic drawing
we give an overview of how the full collinear singularity of partonI, and the full soft singularity of
theIK pair, would be obtained for five different kinds of parton shower models, as follows.

In a traditional parton shower, the full collinear singularity of each parton is contained in the
DGLAP splitting kernel,P (z), that generates radiation off that parton. Since no other radiators share
that collinear direction, there is no double counting at theLL level. (The kernelP (z) constitutes
a complete subtraction term for the collinear singularities in real-emission contributions to an NLO
calculation.) However, in this approach, the soft (eikonal) singularity between theIK pair must be
obtained by summing the radiation functions of partonsI andK together, and therefore it is essential
in this type of approach that both the radiation functions and the shower phase-space factorization
represent a correct partitioning of the soft region, with noso-called dead or double-counted zones.

In the early eighties it was shown [40] that additional coherence effects can also be taken into
account in this language, albeit approximately, by imposing angular ordering during shower evolu-
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tion. This effectively represents a first step towards treating color-connected partons as multipoles
in the shower context; partonsI andK now effectively acquire some knowledge of each other, via
their relative opening angle, and hence they no longer act ascompletely independent emitters. This
improvement is denoted “Coherent Parton Showers” in the table in fig. 2. As indicated by the appear-
ance of theΘ function in the collinear term in such approaches, it is important to construct the angular
ordering in such a way that the effect of the veto disappears in the collinear limit.

In this paper, we follow the dipole-antenna approach to color coherence. This is motivated by
the observation that, whereas the collinear singularitiesare associated with single logarithms, the
parametrically larger double logarithms arise from soft (eikonal) factors. It therefore makes sense to
change the underlying picture to a dual one in which partonpairs are the fundamental entities. Such
pairs appear in the fixed-order literature under the name ofantennæand in the shower one, under
the name ofdipoles. The latter term, however, usually means something else again in the fixed-order
literature. To avoid confusion, we therefore call these pairs dipole-antennæ. In this picture, the roles
of soft and collinear singularities are interchanged, withrespect to the parton picture. The soft double
logarithms between neigboring partons now come from a single term, which is thus guaranteed to be
neither over- nor under-counted as no other pairs become doubly singular in the same phase-space
region. The single logarithmiccollinear radiation off a given gluon must now be partitioned among
the two neighboring antennæ that share it. (Note that quarksare still unambiguous in this picture.)
The gluon case is represented by the line labeled “Global Dipole-Antenna” in the table in fig. 2.

There is considerable freedom in how to partition the collinear radiation, because terms can be
shuffled back and forth “across the gluon” while maintainingtheir sum constant. Two convenient
examples are furnished by ARIADNE [17] and by Gehrmann et al. (GGG) [36], which use different
decompositions (see ref. [41] for some additional discussion of this point).

The first important point concerns what to compare; obviously, the individual shower functions
differ by collinear singular terms. Thus, if we naively subtract the ARIADNE functions forqg → qgg
andgg → ggg [17] from the corresponding GGG ones3 [36], we obtain

δqgGGG−AR =
1

s

(
2yik
yijyjk

+
yijyik
yjk

+
yikyjk + y2jk

yij
+

5

2
+

1

2
yjk

)
− 1

s

(
(1− yij)3 + (1− yjk)2

yijyjk

)

=
1

s

(
1− 2yij
yjk

− yij +
5

2
− 1

2
yjk

)
, (23)

δggGGG−AR =
1

s

(
2yik
yijyjk

+
yijyik
yjk

+
yjkyik
yij

+
8

3

)
− 1

s

(
(1− yij)3 + (1− yjk)3

yijyjk

)

=
1

s

(
1− 2yjk
yij

− yij +
1− 2yij
yjk

− yjk +
8

3

)
, (24)

which differ by gluon-collinear singular terms. However, when we sum over the two possible order-
ings of the gluons in eq. (23) and the three orderings in eq. (24), the discrepancies become collinear-
finite,

∆qg
GGG−AR = δqgGGG−AR + (j ↔ k) =

6

s
, (25)

∆gg
GGG−AR = δggGGG−AR + (j ↔ k) + (i↔ j) =

12

s
. (26)

3Note that, in the shower context, different color orderingsof the final state are represented as separate events, wherefore
the shower function should only containoneof the permutations, corresponding to what GGG label asub-antenna.
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Figure 3: The three phase-space sectors in a color-singletgigjgk configuration, usingp⊥ as the dis-
ciriminator for which sector a given emission/clustering/history belongs to.

We see that, once summed over permutations, the ARIADNE functions have substantially smaller
finite terms than the GGG ones. The ARIADNE shower is accordingly somewhat softer than the
default VINCIA one, which uses the GGG functions, but the singular terms arethe same, in spite of
the apparently singular differences between the individual shower functions.

We shall usually choose the partitioning of GGG, which makesthe collinear terms of the gluon
antennæ appear almost identical to those involving quarks in our parametrization, thus emphasizing
their similarities. Note that for shower applications, thepartitioning must be done in such a way that
the resulting shower functions are positive definite. This is indeed the case for all the functions we
consider in this paper — a counter example is given in ref. [43], where the positive-definite ARIADNE

antenna functions are repartitioned à la GGG in a way that introduces negative regions in the individual
gg → ggg shower functions, while maintaining their sum constant.

A different approach to the issue of how to partition the collinear singularities is to retain the
full collinear singularity of the gluon inboth of the neighbouring antennæ, and combine this with
phase-space vetos that allow only one or the other antenna tocontribute to each given phase-space
point, a possibility we have labeled “Sector Dipole-Antenna” in the table in fig. 2. The distinction
between global and sector antennæ is thus that in the former,several antennæ (two that are singular,
and possibly more that are non-singular) are summed over allof phase space, in a way such that
their sumreproduces the full collinear singularity, and in the latter case every single term contains
the full singularities, but only one term (the most singular) is allowed to contribute to any given
phase-space point. An illustration of the sectors appropriate to one color ordering in the decay of a
scalar,H0 → gagrgb, is given in fig. 3. This approach has been suggested for use inNLO fixed-
order calculations, and can be used with VINCIA as well. Larkoski and Peskin (LP) [41] have also
considered these kinds of antennæ, including polarizationeffects.

Finally, a different approach, which also treats dipole coherence exactly, consists of systematically
partitioning both the soft and collinear singularities ofI andK into four terms, two of which treat
partonI as the emitter, withK andH acting as spectator/recoiler, respectively, and the othertwo terms
treating partonK as the emitter, now with partonsI andL acting as spectator/recoiler, respectively.
Catani and Seymour [25, 44] labeled this adipole model, but as this usage differs from an older use
of the term dipole in parton-shower calculations to describe the sum of two such terms (in the context
of the Lund dipole [15, 16]), we avoid confusion by referringto the CS type as apartitioned-dipole
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shower and to the Lund-dipole/antenna type as adipole-antennashower. In the case of partitioned
dipoles, the radiation off partonI is split into two terms (“sides”), each of which contains “half” of
the collinear singularity of partonI and “half” of the soft singularity with either of the neighboring
partons, e.g.,

aI,K =
1

2
Coll(I) +

1

2
Soft(IK) , (27)

where the subscripts are intended to denote that this is the term for I emitting andK recoiling.
There are thus a total of 4 radiation functions involving partons I andK, but these terms can now
all be constructed explicitly so as to have the correct limiting behaviors. Obviously, there is some
ambiguity concerning which functional form to choose for how to divide up the radiation among the
various terms, which is why “half” is in quotation marks. Recently, Nagy and Soper (NS) presented a
proposal [45] for turning the CS subtraction scheme into a parton shower; several groups have since
developed CS-style showers, most notably Dinsdale, Ternick, and Weinzierl [24] and the SHERPA

group [23]. Although not based on the CS formalism, we note that thep⊥-ordered showers in PYTHIA

8 are also closely related to this approach.

Kinematics Map: The kinematics mapspecifies the details of how to reconstruct the parent mo-
mentaIK from the daughter momentaijk and is equivalent to what is referred to as the the “recoil
strategy” in parton shower language. In an old-fashioned parton shower [46], or a Catani-Seymour
one [23–25, 31, 45], for instance, the recoil strategy usually implies classifying eitherI or K as the
emitterand the other as therecoiler, with the recoiler being constrained to experience a momentum
change only along its direction of motion in some frame (e.g., the rest frame of the emitter + recoiler),
say,pi||pI . In dipole-antenna approaches,I andK can be allowed to share the emitter/recoiler roles
more smoothly over the resolved parts of phase space, with a clear distinction only being made in the
strictly singular limits.

In principle, allowing recoils also outside the2 → 3 process itself, i.e., involving other partons
thanI andK, could be imagined, as long as the leading singular limits are respected. This would
change the subleading properties of the resulting shower approach, which might be deemed desirable
in some contexts, although it of course would not alter the formal level of precision. However, it
does make the formalism more cumbersome, and hence we shall here restrict our attention to “local”
recoil strategies, i.e., involving only the partonsI andK. With this restriction in mind, the constraints
that must be fulfilled to obey the singular limits and viable functional forms the kinematics map were
discussed in refs. [17,33,36,47,48] (including2→ n generalizations in refs. [47,48]).

For illustration, fig. 4 shows the branching phase space together with examples of the orientation
of the post-branching partons in the CM of the branching antenna for various phase-space points,
using an antenna-like kinematics map, the “ARIADNE angle”, according to which the two parents
share the transverse component of recoil. We shall return tokinematics maps later, but for the present
merely note that the difference between an emitter-recoiler picture and the map used in fig. 4 is just
an overall rotation (about an axis perpendicular to the paper), which vanishes in the soft and collinear
limits.

3 A Shower Generator Based on Dipole-Antennæ

A parton shower algorithm can be constructed from knowledgeof the Sudakov form factor∆(Q2
E1, Q

2
E2)

representing the probability that no branching occurs between the scalesQ2
E1 andQ2

E2. The Sudakov
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Figure 4: Illustration of the branching phase space, eq. (12), for qq̄ → qgq̄, with the original dipole-
antenna oriented horizontally, an antenna-like kinematics map (the “ARIADNE angle”) in which the
two parents share the transverse component of recoil, andφ chosen such that the gluon is radiated
upwards.

form factor is in turn given by the exponential of a branchingintegral,

∆ = exp(−A) , (28)

where, following the conventions laid down in the previous section, the integralA of an antenna
function over the2→ 3 antenna phase space is

A =

∫
dsij dsjk

αs

4π

Cijk ā(s, sij , sjk,m2
i ,m

2
j ,m

2
k)√

λ
(
s,m2

I ,m
2
K

)
m→0
=

∫
dsij dsjk a(s, sij , sjk) . (29)

(We have suppressed the trivial integration overφ.) Here, we have set all masses to zero, which
approximation we adopt throughout this paper. Performing such integrals over all of phase space
yields exactly the subtraction terms used in antenna-basedfixed-order calculations, see, e.g., ref. [36].
(If the approach relies on phase-space vetos, such as in the case of sector antennæ, we can treat these
as step functions that are part of the antenna functiona, so that eq. (29) remains valid). Within the
shower algorithm, we need to evaluate the integral for a range of scales, and then invert the function
to write the lower scale as a function of the Sudakov form factor. The two-dimensional nature of the
integral means that we have to define coordinates, of which one will be the evolution scale of the
shower. We can use this to our advantage, as we will see below,to allow for a number of different
evolution variables within the same formalism. A functional inversion that is both flexible and efficient
is accomplished by first using a simple overestimate of the antenna function, and then vetoing to obtain
the exact result.

13



3.1 The Evolution Integral

In eq. (29) we left the integration boundaries unspecified. For showering purposes, what is needed is
not the integral over the entire phase space, but over a region bounded by two values of theevolution
variable,

A(s,Q2
E1, Q

2
E2) =

∫ Q2
E1

Q2
E2

dsij dsjk a(s, sij , sjk) ; Q2
E2 < Q2

E1 , (30)

which represents the integrated tree-level splitting probability when goingfrom the scaleQE1 to the
(lower) scaleQE2. This is the fundamental building block which we shall laterexponentiate and
invert in order to find the evolution equation, but first we need to recast it so that the evolution variable
appears explicitly as an integration variable.

We do this by a change of variables from the original invariants to a new set, one of which is
the evolution variable,QE, and the other we may labelζ, since it will play a role similar to, but not
identical with, that of thez variable of traditional collinear-based shower algorithms. That is, our
generic evolution integral will have the form

A(s,Q2
E1, Q

2
E2) =

∫ Q2
E1

Q2
E2

dQ2
E dζ |J | a(s, sij , sjk) , (31)

where|J | is the Jacobian associated with the transformation from(sij, sjk) to (Q2
E , ζ).

One immediate difference between our approach and traditional collinear-based formalisms is that
there is here no explicit dependence on the precise definition of ζ; it merely serves to (re)parametrize
phase space, and from a set of generated(Q2

E , ζ), the set of invariants(sij , sjk) may be obtained
without ambiguity. By contrast, in classic parton-shower approaches one would usually start from the
collinear-limit splitting functionsP (z) or similar objects, and since these are only accompanied by
an unambiguous definition ofz in the collinear limit, the precise definition ofz away from this limit
(energy or light-cone momentum fraction? in which frame? with finite-momentum recoils?) results
in an ambiguity which is not present in our treatment.

There is of course a dependence on the functional form ofQE , which formally enters starting
from second order in the expansion for an IR safe observable (for IR sensitive ones,QE is needed
as a regulator already at first order). Much effort has gone into debating and examining the vices
and virtues of individual choices. Our stance is to order preferably in the inverse of the radiation
function, since it is the singularities of this function which drive the logarithms; i.e., inp⊥ for gluon
emission and in the invariantmqq̄ for gluon splitting toqq̄. Here, however, since we start directly from
eq. (30), the phase-space factorization expressed in eq. (12) is preserved foranychoice ofQE andζ,
and so rather than restrict ourselves to one specific form, wemay instead seek a general solution to the
evolution integral which will apply to a continuous class ofLorentz invariant evolution variables. By
varying this unphysical parameter (which effectively amounts to changing the factorization scheme
since the evolution variable is what separates “resolved” from “unresolved” parts of the calculation at
any given stage of the evolution) we obtain an estimate of theamount of scheme dependence which
is generated by this variable — a dependence that higher-order matching will explicitly reduce, as we
shall see below. The remaining variation can then be interpreted as an uncertainty estimate.

We stress that we here only give thepossibility to vary this choice — further studies would be
required to determine what a sensiblerangeof variation would be, in the context of uncertainty esti-
mates, in the same way that one discusses variations of otherunphysical parameters for uncertainty
estimates. The latter is obviously an art, not an exact science, but an art for which we can at least
furnish the tools.
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3.2 Trial Functions

To simplify the equations, we shall make use of the veto algorithm to replace the integrand,a, by a
simpler function,atrial, which we shall call the “trial function”. Provided our trial function is larger
than the actual integrand, the veto algorithm will allow us to recover the exact integral post facto,
and if the overestimates are not extremely wild, only a smallloss of efficiency should result. We will
choose the trial function to have the same leading (double) singularities as the full antenna function.
It will thus provide us with a simple Lorentz-invariant phase-space generator which is pre-weighted
to take into account these leading double-logarithmic singularities of QCD; we may then reweight
back down to more exact expressions efficiently. These more exact expressions may be complete
matrix elements or dipole-antenna splitting functions, depending on what is available at a given order
in perturbation theory. The overestimating function we shall use for all branchings is the following,
with a normalization depending on whether the trial processis gluon emission or gluon splitting toqq̄,

atrial-emit =
α̂s

4πsijk
CA ātrial-emit =

α̂s

4πsijk
CA

2sijk
sijsjk





qq̄ → qgq̄
qg → qgg & c.c.
gg → ggg

(32)

atrial-split =
α̂s

4πsijk
nf T̂R ātrial-split =

α̂s

4πsijk
nf T̂R

sijk
sijsjk

{
qg → qq̄′q′ & c.c.
gg → gq̄q + q̄qg

. (33)

wherenf is the number of kinematically accessible flavours andα̂s is a parameter representing a
“trial” αs; it should be greater than or equal to the latter. We will explain its use further in sec. 4. For
comparison, the Eikonal (soft) approximation for gluon emission is

S̄emit(s, sij , sjk) =
2(s − sij − sjk)

sijsjk
=
s− sij − sjk

s
ātrial-emit(s, sij, sjk) , (34)

such that our approximation coincides with the Eikonal in the soft limit, sij → 0 and sjk → 0,
and is larger than the Eikonal everywhere else. Obviously, the normalization factor can be adjusted
should extreme variations exceeding these upper bounds be deemed interesting to study; however
we have not found that to be necessary in connection with any of the studies in this paper. Note
also that using the Eikonal for gluon splitting is likely to give a very large overestimate over most of
phase space, as compared to the physical antenna functions (which only generate single logs, while
the Eikonal generates double logs), thus leading to low efficiency in the subsequent veto step. This
may therefore be a technical point to improve on in future work, but for the time being we prefer the
simplicity of having the same functional form to work with for all trials. Let us emphasize that the
veto algorithm ensures that there is no trace of the overestimator present in the final results, either in
tree-level expansions or in the Sudakov exponentials. The only sensitivity to the overestimator is in
thespeedof the calculation, which we have tested to be comparable to that of standalone PYTHIA 8.

Inserting the trial functionatrial-emit from eq. (32) and the Jacobian for the transformation from
(sij , sjk) to arbitrary(Q2

E , ζ), eq. (30) then becomes

Atrial-emit(s,Q
2
E1, Q

2
E2) =

CA

4π

∫ Q2
E1

Q2
E2

dQ2
E dζ |J | 2α̂s

sijsjk
, (35)

where we have kept̂αs inside the integral since the renormalization scale may vary over phase space.
The last remaining step before we can solve this equation is now to rewrite the term|J |/(sijsjk) in
terms ofQE andζ for a sufficiently general class of functional forms ofQE.
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Figure 5: Illustration of theζ definition, eq. (36). The physical phase space, shown in grey, is the
same on both panes, and theζ definition is also the same, but on the left the phase space is shown on
a linear scale in the branching invariants and on the right ona logarithmic one.

We shall start by specifyingζ. In principle, one could define a differentζ for each possible choice
of QE , but this would be cumbersome and would not lead to any significant gains. We have therefore
settled on one particular form forζ to use for all evolution variables in this paper. There are two
requirements for such aζ definition:

• It should be linearly independent of anyQE that we would conceivably consider. I.e.,ζ should
not itself be a candidate for an evolution variable.

• Curves of constantζ should intersect curves of constantQE once and only once for allQE > 0,
such that the Jacobian is well-defined.

A ζ definition that fulfills these conditions for the entire class ofQE variables we shall consider
is the following simple ratio of invariants, illustrated infig. 5:

ζ =
sij

sij + sjk
⇒ 1− ζ = sjk

sij + sjk
. (36)

We emphasize again that all we have done so far is recast the Lorentz invariant phase space in terms of
two new variables which are, themselves, arbitrary. There is no explicit dependence on the particular
form of ζ. (There is a dependence onQE of course, but only through the boundaries of the integral.)

To compute the Jacobian, we will need the derivatives,

∂ζ

∂sij
=

sjk
(sij + sjk)2

=
ζ(1− ζ)
sij

,
∂ζ

∂sjk
=

−sij
(sij + sjk)2

=
−ζ(1− ζ)

sjk
. (37)

The Jacobian is,

det

(
∂{sij , sjk}
∂{Q2

E , ζ}

)
= det−1

(
∂{Q2

E , ζ}
∂{sij , sjk}

)
=

sijsjk
ζ(1− ζ)

[
sij
∂Q2

E

∂sij
+ sjk

∂Q2
E

∂sjk

]−1

. (38)
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Inserting this in eq. (35) we get a master equation for evolution in an arbitrary variableQE (for
trials distributed according to the function̄atrial-emit):

Atrial-emit(s,Q
2
E1, Q

2
E2) =

CA

4π

∫ Q2
E2

Q2
E1

dQ2
E

∫ ζmax(Q2
E
)

ζmin(Q
2
E
)
dζ

2α̂s

ζ(1− ζ)

[
sij
∂Q2

E

∂sij
+ sjk

∂Q2
E

∂sjk

]−1

, (39)

where the function in square brackets represents the leftovers from the Jacobian, and the functions
ζmin(Q

2
E) andζmax(Q

2
E) re-express the phase-space triangle in terms ofQE andζ. Given any specific

form ofQE these three functions can be derived, and hence a particularevolution equation obtained.

3.3 Evolution Variables

Given the structure of eq. (39), one sees that the evolution integral will become particularly simple for
any evolution variable which satisfies the following simpledifferential equation,

Q2
E(s, sij , sjk) = κE

(
sij
∂Q2

E

∂sij
+ sjk

∂Q2
E

∂sjk

)
. (40)

Rather than base our formalism on one particular choice of evolution variable, as is usually done, we
shall therefore instead derive our formalism so that it applies toanyevolution variable which satisfies
eq. (40). Making only this requirement, the evolution integral simplifies to

Atrial-emit(s,Q
2
E1, Q

2
E2) = κE

CA

4π

∫ Q2
E1

Q2
E2

dQ2
E

Q2
E

∫ ζmax(Q2
E
)

ζmin(Q
2
E
)
dζ

2α̂s

ζ(1− ζ) , (41)

which may be solved once and for all, independently of the choice ofQE . (The explicit dependence
on the form ofQE will reemerge, as it should, when translating from a generated set of(QE, ζ) back
to the branching invariants,(sij, sjk), but this is a separate step, to be treated below.) As explained
later, we will takeα̂s to depend solely onQ2

E , and to be independent ofζ.
Though any symmetric power series in the branching invariants is a solution to eq. (40), for the

purpose of this paper we shall impose two additional “reasonable” boundary conditions. Firstly, that
an infinitely soft branching should always be classified as “unresolved” for any finite value of the
evolution variable, i.e., the evolution variable must go tozero when both invariants vanish,QE(0, 0) =
0. We note that this apparently mild restriction will nonetheless prevent us from considering a specific
class of variables, which in fact include angular ordering,since in an angular-ordered cascade, a large-
angle emission may be resolved, even when soft. We shall alsorequire that the evolution variable be
symmetric in the two invariants,QE(yij, yjk) = QE(yjk, yij).

We can put the differential equation (40) in dimensionless form by dividing bys,

YE(yij, yjk) = κE

(
∂YE
∂ ln yij

+
∂YE
∂ ln yjk

)
, (42)

whereYE = Q2
E/s, yij = sij/s, andyjk = sjk/s.

If we define
L+ = (ln y1 + ln y2)/2 , L− = (ln y1 − ln y2)/2 , (43)

then eq. (42) takes the form,

YE(L+, L−) = κE
∂YE
∂L+

, (44)
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Figure 6: Illustration of thea parameter in eq. (47). Note that the second plot from the leftcorresponds
to choosing the daughter antenna mass as the evolution variable, and the third pane corresponds to the
ARIADNE definition ofp⊥. Contour labels indicate values ofyE = Q2

E/s.

which has the general solution,

YE(sij, sjk) = f̂0(L−) exp (L+/κE) + c0

= f0(sij/sjk)(sijsjk/s
2)1/(2κE) + c0 . (45)

wheref0 is a dimensionless function satisfyingf0(x) = f0(1/x) and the requirement thatYE(0, 0) =
0, andc0 is a constant (which we uniformly set to zero).

For illustrative purposes, it will be convenient to introduce additional parameters — a main shape
parameter,a, and two auxiliary parametersb andp — and take

f0(x) =





(
√
x+

√
1

x

)2


a

− b


(
√
x−

√
1

x

)2


a


p

. (46)

This yields a continuously deformable class of evolution variables that fulfill eq. (40) subject to our
two additional conditions; the corresponding expression for the evolution variable is,

Q2
E(s, sij, sjk) = s

([(
sij + sjk

s

)2
]a
− b

[(
sij − sjk

s

)2
]a)p

, (47)

subject to the constraints,

a > 0 , b ≤ 1 , p > 0 , 2ap =
1

κE
. (48)

The overall normalization is fixed so that the maximum of the evolution variable is the invariant mass
of the dipole:a sets the relative soft/collinear resolution power (to be explained further below);b 6= 1
allows for variables which do not go to zero on the axes (i.e.,for which purely collinear branchings
may appear resolved, as is the case, e.g., for energy ordering), and thus requires an additional infrared
regulator independent of the evolution variable; andp allows modifying the overall speed of the
evolution over phase space.

The effect of varyinga is illustrated in fig. 6, withb = 1. We increasea from left to right in the
figure. Small values, toward the left, yield evolution variables that are “better” at resolving phase-
space points towards the origin (corresponding to soft branchings) whereas large values ofa yield
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Figure 7: Illustration of theb andp parameters in eq. (47). Note that all of these variables are propor-
tional to the energy of the emitted gluon (in the CM of the dipole-antenna) to some power. Contours
indicate values ofyE = Q2

E/s.

variables that are “better” at resolving points near the axes (corresponding to purely collinear ones).
A shower based on the evolution variable to the far left in thefigure would generate soft branchings
earlier in the shower than collinear ones, while a complementary ordering would result in a shower
based on the variable illustrated on the far right. We stressthat the leading limiting behavior in the soft
and collinear regions are in all cases the same, but these differences will lead tosubleadingdifferences
between the showers. The size of these differences may be estimated by varying the evolution variable
used to generate the showers.

An illustration of theb parameter is obtained by comparing the plots in fig. 6 to thosein fig. 7,
where the former all haveb = 1 and the latter allb = 0. As mentioned above, choosingb 6= 1 gives
evolution variables that do not go to zero on the axes. Accordingly, the contours on the plots in fig. 7
intersect the axes, while the ones in fig. 6 do not. The corresponding showers would generally have
greater sensitivity to the infrared region and thus to hadronization effects. These variables correspond
to those that are used in some analytic resummation calculations [49]. Finally, going from left to
right in fig. 7, we see that small values of the speed parameter, p, correspond to a faster progress of the
evolution variable over phase space, whereas largep values give the opposite. This speed has no effect
on the generation of the first branching, but it does affect the value of the restart scale for subsequent
branchings, which we will return to below.

Some specific examples of evolution variables of this form that could be useful for Monte Carlo
purposes are given in table 1, where we also give the corresponding ζ limit functions and show how
the generic functional form, eq. (47), simplifies considerably in several cases. For instance, setting
a = 1, b = 1, p = 1 gives thep⊥-ordering variable used both in ARIADNE as well as in more
recent work [32,33]. Contours of constant value of this variable are shown on the third pane of fig. 6.
Contours illustrating the other variables in tab. 1 can alsobe found in figs. 6 and 7. (E∗

Tn-ordering is
shown forn = 1 only, for which case we leave out the explicit subscriptn.) Note that the nameE∗

Tn

does not imply that this variable represents a physical transverse energy, but rather that it represents
an interpolation betweenp⊥ andE∗, with lower values of then parameter making it closer top⊥ and
higher values making it closer toE∗. TheV variable is named simply for the shape it has over phase
space, like aV pointing towards the soft region, cf. the leftmost pane in fig. 6.

For completeness, a few important examples of evolution variables that arenot covered using our
formalism are the traditional1→ 2 parton-shower ones in PYTHIA and HERWIG, illustrated in fig. 8.
For the forms of the HERWIG and PYTHIA evolution variables, translated to our phase-space notation,
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Name a b p Resulting form forQ2
E ζmin(Q

2
E) ζmax(Q

2
E)

1 p⊥-ordering 1 1 1
4sijsjk

s = 4p2⊥Ariadne
1∓
√

1−Q2
E
/s

2

2 mD-ordering 1
2 1 1 2min(sij, sjk) = 2m2

D
Q2

E

2s 1− Q2
E

2s

3 E∗-ordering 1 0 1
(sij+sjk)

2

s = 4E∗2
j 0 1

4 V -ordering 1
4 1 1

√
s(sij + sjk)−

√
s|sij − sjk| 1∓(1−Q2

E
/s)2

2

5 E∗
Tn-ordering(n ≥ 1) 2n 1 1

2n n = 1 :
√

8sijsjk(s
2
ij
+s2

jk
)

s

1∓(1−(Q2
E
/s)2n)

1
4n

2

Table 1: Examples of evolution variables in the form of eq. (47) and corresponding to the illustrations
in figs. 6 and 7. The nominalζ boundaries forE∗ ordering would lead to infinities, so for practical
applications the bounds implied by the hadronization cutoff should be used instead.

JETSET & FORTRAN PYTHIA PYTHIA 6.3+ & PYTHIA 8 HERWIG++
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Figure 8: In an old-fashioned parton shower or partioned-dipole shower, the procesŝab̂ → arb is
divided onto two terms, one representing emission off parton â and the other emission off parton̂b.
Left Pane:contours of constantsar, i.e., the virtuality that corresponds toa∗ → ar in a virtuality-
ordered parton shower. The inset shows the equivalent contours for emission off sideb. Middle
Pane:contours of constantpT evol, the variable used in thep⊥-ordered PYTHIA shower. Note that
for the virtuality-ordered shower, additional vetos on theemission angle, not shown here, must be
imposed to enforce coherence, while in thep⊥-ordered case, this is less crucial due to the use of dipole
kinematics. In anangular-ordered parton shower (right pane), each parton is still evolved separately,
but the potential for double counting has been removed by effectively restricting the emission from
each parton to non-overlapping regions, here angular-ordered cones, and hence we can represent the
two terms on one and the same plot. (Note: while the original HERWIG implementation of angular
ordering did imply some overlap in the soft region, this has been removed in HERWIG++.) The price
to pay is that this introduces an artificially unpopulated dead zone in the phase space, illustrated by
the striped area. The contour labels denote values ofyE = Q2

E/s.
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Figure 9: Examples of evolution variables for which ourζ definition would be multi-valued for each
value ofQE . These particular ones were obtained by merely symmetrizing p⊥ (left) andmD (right)
in all three branching invariants.

we used the following (for evolution with partonI as the emitter):

PYTHIA

virtuality-ordering
: m2

I∗ = sij

PYTHIA

p⊥evol-ordering
: 4p2⊥evol,I = 4

sij(s− sjk)(sij + sjk)

(s+ sij)2

HERWIG++
angular-ordering

: q2θ,I = 4s

(
ssij

(s− sjk)(sij + sjk)

)2

= 4s

(
1− xk
xixj

)2

,

(49)

where we usedxi = (1 − sjk/s) in the last expression. For the PYTHIA p⊥evol variable,j is the
emitted parton, andk is the recoiling one. Analogous expressions hold when partonK is the emitter,
with the substitutionssij ↔ sjk.

Likewise, variables that do not have well-defined Jacobianswith our ζ definition, such as those in
fig. 9, cannot be used without additional work. Examples include,

p2⊥Sym = 27
sijsjksik

s2
(50)

m2
DSym = 3min(sij, sjk, sik) = 3s(1− T3) , (51)

whereT3 is the Thrust event shape variable for a three-parton configuration. Thep⊥Sym variable is
similar to theC-parameter for a 3-parton configuration,

C3 = 6
sijsjkski

(s− sij)(s − sjk)(s − ski)
≤ 3

4
, (52)

which one could therefore also imagine using as the basis foran evolution variable, withQ2
E = 4

3sC3.

3.4 Theζ integral

In general, one might expect the running couplingαs to depend onζ as well asQE ands. If we
simplify the dependence by taking it to depend only onQE and/ors, then the integral overζ is
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V INCIA EVOLUTION WINDOWS

i [QEmin , QEmax] nf

0 [0 , mc] 3
1 [mc , mb] 4
2 [mb ,

√
mbmt] 5

3 [
√
mbmt , mt] 5

4 [mt , ∞] 6

Table 2: The evolution windows used in VINCIA , with theQE boundaries and active number of
flavors corresponding to each. The number of active flavors isthe same for windows 2 and 3, but the
ζ boundaries for trials are different, due to the differentQEmin values. This improves the efficiency
of the generator. The first window will not actually extend down to zero in practice, but will instead
be cut off by the hadronization scale.

straightforward:

Iζ(ζmin(Q
2
E), ζmax(Q

2
E)) =

∫ ζmax(Q2
E
)

ζ
min(Q2

E
)

dζ
1

ζ(1− ζ) = ln

[
ζmax(Q

2
E)(1 − ζmin(Q

2
E))

ζmin(Q2
E)(1 − ζmax(Q2

E))

]
. (53)

One would expect anyζ dependence inαs to be reduced by computing to higher orders in perturbation
theory. At a fixed order, aζ-dependentαs could still be accommodated, for example, by choosing a
ζ-independent (large)̂αs for trials and then applying the veto algorithm. The case of aQE-dependent
αs will be treated explicitly below.

3.5 Evolution Windows

To simplify the trial generation further we shall generate trial branchings in a larger phase-space
region than the physically allowed one, again using the vetoalgorithm to avoid generating any actual
branchings in the unphysical region. Specifically, we divide the generation of trial branchings into
discrete windows inQE — given in table 2 — and, in each such window, replace theζ limits in the
previous equation by constant ones,

ζmin(Q
2
E) = ζmin(Q

2
Emin) , ζmax(Q

2
E) = ζmax(Q

2
Emin) (54)

whereQEmin is the value ofQE at the end of the current window (e.g., the next flavor threshold or,
ultimately, the hadronization scale). If none of the generated trials fall within the current evolution
window, the evolution should be restarted atQE = QEmin, upon which theQEmin andζ boundaries
should be updated to correspond to those of the next evolution window. If the crossing corresponds
to a flavor threshold, the normalization of the trial function for gluon splitting should be updated with
the new number of active flavors, and ifαs depends explicitly onQE, thenΛQCD should, likewise, be
updated.

3.6 QE integral for QE-independentαs

With theζ integral for trial branchings having now effectively become a constant depending only on
the current “evolution window” (i.e., the currentQmin), we may perform theQE integration indepen-
dently of theζ one. We do this first for the case where the renormalization scale inαs is constant over
the branching phase space.
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In this case, the evolution integral, eq. (41), becomes

Atrial-emit(Q
2
E1, Q

2
E2) = 2α̂sκE

CA

4π
Iζ(ζmin, ζmax) ln

(
Q2

E1

Q2
E2

)
, (55)

whereζmin,max are the ones appropriate to the current evolution window, asgiven in tabs. 1 & 2.
The equivalent expression for the trial function for gluon splitting, Atrial-split, only differs by an

overall normalization factor, cf. eqs. (32) & (33), and hence we do not reproduce it explicitly here.
In addition to a zeroth order (fixed)αs or a runningαs that depends only on the parent dipole-

antenna mass,αs(s), these expression will be needed, for instance, to useαs(p⊥) together with any
non-p⊥ evolution variable. Technically, we accomplish this by setting the trialα̂s equal to unity (or
some other relatively large number) in the above equation and then accepting the generated(QE , ζ)
pair with the probabilityαs(p⊥)/α̂s.

3.7 QE integral for first-order QE-dependentαs

We shall also allow for the possibility to use a first-order runningαs, with a renormalization scale that
depends explicitly onQE ,

αs(k
2
µQ

2
E) =

1

b0 ln(k2µQ
2
E/Λ

2)
, (56)

where

b0 =
11CA − 2nf T̂R

12π
, (57)

and wherekµ is an overall scaling factor,nf is the active number of flavors, andΛ is the appropriate
(nf -dependent) value ofΛQCD.

The evolution integral then becomes

Atrial-emit(s,Q
2
E1, Q

2
E2) = 2κE

CA

4π
Iζ(ζmin, ζmax)

1

b0

∫ Q2
E1

Q2
E2

dQ2
E

Q2
E

1

ln(k2µQ
2
E/Λ

2)

= 2κE
CA

4π
Iζ(ζmin, ζmax)

1

b0

∫ x2
E1

x2
E2

dx2E
x2E

1

ln(x2E)

= 2κE
CA

4π
Iζ(ζmin, ζmax)

1

b0
ln

(
ln(x2E1)

ln(x2E2)

)
, (58)

where

x2E =
k2µQ

2
E

Λ2
. (59)

3.8 QE integral for QE-dependentαs

More generally, we can incorporate aQE-dependentαs by changing variables using theβ function,

dαs(Q
2
E)

d lnQ2
E

= β(αs) . (60)
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This allows us to rewrite eq. (41) as follows,

Atrial-emit(s,Q
2
E1, Q

2
E2) = κE

CA

4π

∫ αs(Q2
E2)

αs(Q2
E1)

dαs

β(αs)

∫ ζmax(Q2
E
(αs))

ζmin(Q
2
E
(αs))

dζ
2αs

ζ(1− ζ) (61)

When we make the substitutions of eq. (54) here, the inner integral will be independent ofαs. With
the two-loop beta function,

β(αs) = −b0α2
s − b1α3

s , (62)

whereb0 is given by eq. (57) and

b1 =
17C2

A − nf T̂R(5CA + 3
2ĈF )

24π2
, (63)

theαs integral is simple,

∫ αs(Q2
E2)

αs(Q2
E1

)

dαs

β(αs)
=

1

b0
ln

(
αs(Q

2
E1)

αs(Q2
E2)

)
+

1

b0
ln

(
1 + b1/b0αs(Q

2
E2)

1 + b1/b0αs(Q2
E1)

)
. (64)

This function can be inverted readily using a Newton-Raphson solver, which can likewise be used to
obtainQ2

E(αs). It can be extended readily to higher loops because additional orders only introduce
new denominator factors of the form(1 + cαs).

3.9 The Evolution Equation

We now have all the pieces in hand to construct the evolution equation for a generic shower sub-
ject only to the conditions outlined in the preceding paragraphs; that the individual trial branchings
be 2 → 3 mappings from on-shell momenta to on-shell momenta, respecting the Lorentz-invariant
phase-space decomposition, eq. (12), for any evolution variable that satisfies the differential equation,
eq. (40).

The generating function for such a shower is the Sudakov formfactor,

∆(Q2
E1, Q

2
E2) = exp

(
−A(Q2

E1, Q
2
E2)
)
, (65)

where we may substitute forA either of the expressions eqs. (55) or (58).
In order to generate trial branchings according to this Sudakov, we must solve the equation

R = ∆(Q2
E1, Q

2
E2) (66)

for QE2, whereR is a random number distributed uniformly between zero and one andQE1 is
the “(re)starting scale”. The latter represents the scale the shower is being restarted at prior to the
generation of the next trial branching. To give an idea, thiscan either be the full dipole center-of-mass
energy,

√
s, which will usually be the case for the very first branching following a resonance decay,

or, later on in the shower evolution, the scale of the preceding trial branching.
The solution of this equation is the paramount reason we chose to use a simplified antenna func-

tion for trial generations. It would have been possible to solve the evolution integral itself for more
complicated trial functions, but the inversion of eq. (66) to solve forQE2 as a function ofR andQE1

would then have been much more cumbersome.
Solving the evolution equation for aQE-independent̂αs, using eq. (55), yields

Q2
E2 = Q2

E1R
b , (67)
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with

b =
4π

2α̂sκECAIζ(ζmin(Q2
Emin), ζmax(Q2

Emin))
. (68)

Solving the evolution for a first-order runningQE-dependent̂αs, using eq. (58), yields

Q2
E2 =

Λ2

k2µ

(
k2µQ

2
E1

Λ2

)Rb′

, (69)

with

b′ =
4π

2κECAIζ(ζmin(Q
2
Emin), ζmax(Q

2
Emin))

11CA − 2nf T̂R
12π

. (70)

As mentioned earlier, given any set of branching variables(Q2
E , ζ) we may obtain the invariants

(sij , sjk) without ambiguity. Thus, the next step is to generate aζ value, givenQE2. Since we defined
ζ independently ofQE, we may do this once and for all, with the solution applicableto all evolution
variables. To generate a randomζ value distributed according to the integrand of theIζ integral,
eq. (53), we must solve the equation

Rζ =
Iζ(ζmin, ζ)

Iζ(ζmin, ζmax)
(71)

for ζ, whereRζ is another random number uniformly distributed between zero and one, theIζ integral
given by eq. (53), andζmin(QEmin) is given by the evolution windows (Table 2) and by the evolution-
variable-dependentζ limits (Table 1).

We solve eq. (71) by first translating to the variabler,

rmax =
ζmax

1− ζmax
, rmin =

ζmin

1− ζmin
, (72)

generating a random value forr

r = rmin

(
rmax

rmin

)Rζ

, (73)

and finally solving forζ,

ζ =
r

1 + r
. (74)

If the ζ generated in this way falls outside the physical phase space,

ζ < ζmin(Q
2
E) ∨ ζ > ζmax(Q

2
E) (75)

the branching is vetoed. This occurs some fraction of the time for the simple reason that we generated
the trial branchings in a hull encompassing the physical phase space. That is, the trials are generated
on a phase-space region bounded byζmin,max(Q

2
Emin), whereas the physical phase space atQE is

bounded byζmin,max(Q
2
E). Since the physical branching probability outside the physical phase space

is obviously zero, the probability to accept unphysical trial branchings should be zero as well. This is
accomplished by the veto.

The last step is to obtain values for the pair of phase-space invariants(sij, sjk) in terms of which
we cast the original evolution equation, eq. (30). Since different forms ofQE depend in a different
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way on these invariants, this step is obviouslyQE-dependent. Here, we give the inversions relevant
to the four evolution variables so far implemented in VINCIA .

sij = ζgevolution(s,Q
2
E, ζ) ; sjk = (1− ζ)gevolution(s,Q2

E , ζ) (76)

with

Type 1: gp⊥ =
QE
√
s

2
√
ζ(1− ζ) , (77)

Type 2: gmD
=

Q2
E

min(ζ, 1− ζ) , (78)

Type 3: gE∗ = QE

√
s , (79)

Type 4: gV =
Q4

E

2s(min(ζ, 1− ζ) +
√
|1− 2ζ|)

. (80)

More generally, in terms of the functionf0 that parametrizes the general solution (45), the inversion
takes the following form,

gf0 =
s√

ζ(1− ζ)

(
Q2

E

sf0

)κE

. (81)

3.10 The LL Shower

In the previous subsections, the ingredients for generating a single trial branching with a trial branch-
ing functionatrial were described. To obtain an LL shower, it suffices to accept each trial branching
with a probability

PLL =
αs

α̂s

Cijk
Ĉijk

āLL(s, sij , sjk)

ātrial(s, sij, sjk)
, (82)

where theαs/α̂s ratio takes into account the possibility that the trial generator could be using a
nominally largerαs than the physically desired one, theC/Ĉ factor represents the same for color
factors, and the antenna function ratio matches the trial function onto the desired physical splitting
antenna for the relevant2 → 3 branching. Because we choseātrial to be larger than (or equal to) the
true antenna function̄aLL everywhere in the dipole-antenna phase space, this probability is always
less than (or equal to) 1. We must also requireāLL to be non-negative in order that the ratio here be
interpretable as probability.

We initiate the shower in electron–positron collisions with quark-pair creation from the interme-
diate vector boson. At each stage in the shower, a gluon will be emitted, or a gluon will split into
a quark–antiquark pair. The shower itself evolves in the leading-color approximation, so after each
emission, the number of different antennæ grows by one, whereas each splitting leaves the number
of antennæ unchanged. We must allow all the different antennæ to branch, of course; we do this by
computing trial branchings for all of them, and picking the antenna with the highest trial branching
scale. For that antenna, we then apply a veto with the probability given in eq. (82).

When a branching is accepted, the physical replacement of partonsI andK by i, j, andk in the
event record next has to be performed. It is here that the dependence on thekinematics mapenters.
Our treatment of this point is identical to that described indetail in ref. [33], and the implementation

26



in V INCIA retains the possibility to choose between the three different maps defined there. These
maps all have identical limits in the LL singular regions, but differ from each other elsewhere.

For a pure strongly-ordered LL shower (i.e., a level of approximation comparable to all other
currently existing shower Monte Carlo implementations), the evolution should then be restarted from
the scale of the current trial (regardless of whether that trial was accepted or not, as per the veto
algorithm; the phase space above that scale has already beenprobed, and hence — according to the
strong-ordering condition — should not be probed again.)

To examine the quality of this type of approximation independently of the shower generator, we
use RAMBO [50] (an implementation of which has been included in VINCIA ) to generate a large
number of evenly distributed 4-, 5-, and 6-parton phase-space points. For each phase-space point,
we evaluate theZ → n matrix element using MADGRAPH (suitably modified to be able to switch
subleading color terms on and off). We then compute the tree-level LL antenna-shower approximation
corresponding to the same phase-space point, based on nested products of2→ 3 branchings subjected
to the condition of ordering in the chosen evolution variable. Finally, we form the ratio between this
approximation and the full matrix element. This is similar to what was done in ref. [34]; where
that study was limited to the emission of two partons, the addition of a new automated interface to
MADGRAPH allows us here to extend the corresponding comparisons through four emissions, thus
making it possible to illustrate in detail how the agreementor disagreement changes with increasing
number of emissions.

Using a clustering algorithm that contains the exact inverses of the VINCIA 2 → 3 kinematics
maps [34], we may performm clusterings of the type(i, j, k) → (I,K) in a way that exactly re-
constructs the intermediate(n − m)-parton configurations that would have been part of the shower
history for eachn-parton test configuration, for any of the three kinematics maps so far implemented
in V INCIA . This gives us an exact reconstruction of how the antenna shower would have populated
each path. The strong ordering condition corresponds to step functions in the shower approximation.
E.g., forZ → q1g2g3q̄4, we have [34],

R4 =

(
Θ(Q3A −Q4A)aqg(1, 2, 3)aqq̄(1̂2, 2̂3, 4) + Θ(Q3B −Q4B)agq̄(2, 3, 4)aqq̄(1, 2̂3, 3̂4)

)
|M2(s)|2

|M4(1, 2, 3, 4)|2
,

(83)
where hatted variableŝı denote clustered momenta,a denote2→ 3 antenna functions,|Mn|2 denote
the color-orderedn-parton matrix elements,s is the total invariant mass squared of then-parton
system, and the ordering conditions depend on

Q4A = QE(1, 2, 3) ; Q3A = QE(1̂2, 2̂3, 4)

Q4B = QE(2, 3, 4) ; Q3B = QE(1, 2̂3, 3̂4)
. (84)

The numerator of eq. (83) thus reproduces the shower approximation expanded to tree level, phase-
space point by phase-space point, for an arbitrary choice ofkinematics map,(i, j, k) → (ı̂, ̂k), and
evolution variable,QE. R thus gives a direct tree-level measure of the amount of over-or under-
counting by the shower approximation, with values greater than unity corresponding to over-counting
and vice versa.

We use the kinematics maps defined in ref. [33],

ψAR =
E2

k

E2
i + E2

k

(π − θik) , (85)

ψPS =

{
0 ; sij > sjk ,

π − θik ; sij < sjk .

}
(86)
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Figure 10: Strongly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Contents normalized by the numberof generated points.
Spikes on the far left represent the underflow bin — dead zonesin the shower approximations. Gluon
emission only. Matrix-element weights from MADGRAPH [51, 52], leading color (no sum over color
permutations).

whereθik is the angle between the after-branching parents in the CM frame of the branching. We
show the results of these comparisons in fig. 10, for four different shower approximations:

• GGG: p⊥-ordering using default VINCIA settings, i.e., the GGG antenna functions and the
ψAR kinematics map for all branchings. I.e., the parents share the recoil in proportion to their
energies in the CM of the dipole-antenna.

• ψPS p⊥-ordering using the GGG antenna functions and the parton-shower-like (PS) longitudinal
kinematics map. I.e., the parent with the largest invariantmass with respect to the emitted parton
recoils only longitudinally.

• mD-ord:mD-ordering using the GGG antenna functions and theψAR kinematics map.

• ARI: p⊥-ordering using our best imitation of the what the real ARIADNE program does. It uses
p⊥-ordering, but with the ARIADNE radiation functions instead of the GGG ones, and it also
uses a special recoil strategy, as follows; forqg dipoles, the quark always takes the entire recoil
(in the CM of the dipole), whereas forgg dipoles, theψAR angle is used to distribute the recoil.

In all cases, we compare to one leading-color (LC) matrix element, i.e., before summing over colors,
and with all color factors having been divided out. We present an extensive set of comparisons for
different ordering variables in appendix A.

The two bins around zero correspond to the parton-shower approximation having less than a 10%
deviation from the full matrix element. At four partons, on the left-hand pane, these two bins contain
over 35-60% of the sampled phase-space points, depending onthe approximation, with tails extending
out towards larger deviations. The spikes at the extreme left edge of the plots represent the underflow
bin, including−∞, which corresponds to zones in which all of the possible shower histories have
been removed by the strong-ordering condition. Such dead zones are characteristic of (ordered) LL
parton showers, when the ordering variable is more restrictive than pure phase space. We shall later
discuss how to remove them while simultaneously improving the approximation in the ordered region
as well.

For all multiplicities, the defaultp⊥-ordering with the antenna-like ARIADNE recoil map appears
to generate the best overall agreement (narrowest distribution). The parton-shower-like longitudinal
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Figure 11: Strongly ordered parton showers, using the ARIADNE radiation functions and two different
recoil strategies, compared to matrix elements. Distribution of log10(PS/ME) in a flat phase-space
scan. Contents normalized by the number of generated points. Gluon emission only. Matrix-element
weights from MADGRAPH [51,52], leading color (no sum over color permutations).

recoil map (thin solid line labeledψPS), following the spirit of PYTHIA 6 and showers based on CS
partitioned dipoles and the dipole-mass ordering (dashed line labeledmD-ord) give slightly worse
agreement (wider distributions).

The “ARI” case (thick solid line) has no dead zone for this process (due to the special kinematics
map), but it also appears to generate a somewhat wider, and systematically softer (shifted to the left)
distribution, than the GGG ones. To examine further whetherthis is an effect of the intrinsically softer
radiation functions used in ARIADNE (as shown in ref. [43]), or of the special recoil strategy employed
by it, we plot in fig. 11 the result for 4 and 5 partons using the ARIADNE radiation functions, either
with the default ARIADNE recoil strategy (usingψAR for gg dipoles only, with the quark recoiling
for qg ones — thick solid line, as above) or just usingψAR for all dipoles (solid histogram). From
this comparison, we conclude that there is no significant advantage in assigning all the recoil to the
quark inqg dipoles. Although it removes the dead zone, together with a tail of largely undercounted
events, the peak is actually degraded slightly, which we interpret as indicating a worse agreement with
the matrix elements close to the singular regions. Physically, this could be consistent with the quark
direction having to remain unchanged when the gluon branches collinearly. The position of the peak,
slightly to the left of zero, however, is unchanged. This is consistent with the overall “softness” of the
approximation being driven mainly by the finite terms in the radiation functions, and not by the choice
of kinematics map. It is therefore quite possible that one could find another process in which the finite
terms in the GGG functions would be too large, and the ones in the ARIADNE ones just right.

Returning to fig. 10, as the number of emissions grows, there remains a peak near ME/PS = 1
(note in particular the logarithmicy axis), but the width of the distribution grows progressively larger,
indicating that there is a larger number of individual phase-space points in which the pure shower
is not in agreement with the matrix element. These could be due either to subleading logs, or to
finite terms in the higher-body matrix elements, not captured by the pure shower. Recall, however,
that, since we are looking at a flat phase-space scan, we are biased towards the regions of phase
space where matrix element corrections are important, withthe strongly ordered regions occupying
a progressively smaller volume of the total sampled space. Thus, we interpret this broadening of the
weight distribution not so much as a sign of any breakdown in the shower approximation itself, but
rather as illustrating why it is desirable to match to fixed-order matrix elements, a point to which we
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return below.

4 Improved Showering

4.1 Improving the Logarithmic Accuracy: 2→ 3

A complete set of second-order2 → 3 (one-loop) and2 → 4 (tree-level) dipole-antenna splitting
functions is given in ref. [36]. Ultimately, a matching to these functions to all orders in the shower
would be required to reach formal precision beyond LL, but wenote that a simpler, partial matching
can already be carried out at the2 → 3 level, to the terms generated purely by the running of the
coupling.

These terms can be uniquely identified both in the shower expansion and in the fixed-order antenna
functions by the fact that they are proportional to the QCD one-loop-running coefficientb0 (57), which
appears in the expansion

αs(µ
2
1) = αs(µ

2
2)

[
1− αsb0 ln

(
µ21
µ22

)
+O(α2

s) + ...

]
. (87)

By matching the terms arising from the expansion ofαs in the shower to the actualb0-dependent
pieces of the one-loop antenna functions, we obtain a set of universal corrections at the one-loop level
which stabilize the scale dependence of the resulting calculation to next-to-leading logarithmic (NLL)
accuracy.

In particular, we may extract the relevant terms of the one-loop antenna functions by isolating their
nf -dependent pieces, which are generated purely by quark loops. For gluon emission, the one-loop
antennæ in ref. [36] all contain the followingnf -dependent logarithms,

nf
1

6
(ln yij + ln yjk) a

0
ijk = nf

1

6
ln

(
p2⊥
sIK

)
a0ijk , (88)

wherea0ijk denotes the corresponding tree-level antenna function, and p⊥ is defined exactly as in
ARIADNE and VINCIA , i.e.,

p2⊥ =
sijsjk
sIK

. (89)

Because the default renormalization scale used in ref. [36]is

µ2GGG = sIK , (90)

a redefinition of the renormalization scale fromsIK to p2⊥ would absorb the entire term, eq. (88), into
the definition of the coupling at tree level. Simultaneously, theNC-dependent logarithms generated by
the same choice can easily be verified to cancel equivalent pieces in the one-loop function, however
the latter cancellation is not exact due to the presence of additional terms in the one-loop function
which do not originate from renormalization. (To absorb also these terms would require full one-loop
matching.) We note that this is nothing but a “renormalization-group-improved” effective redefinition
of the tree-level coupling which has been known for a long time [53] and is the reason why the default
renormalization scale both in VINCIA and in virtually all other Monte Carlos4 is p2⊥.

4Note, however, that eq. (89) is the only definition ofp⊥ thatexactlymatches the actualb0-dependent one-loop terms.
Parton shower models not based on the dipole-antenna picture, which make approximations to thisp⊥ definition, will
therefore necessarily have smallb0-dependent remainders left uncanceled.
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However, rather than just hardcoding one particular choice, we shall here instead interpret it in
the context of a second-order matching condition, which will allow us the flexibility to estimate the
remaining uncertainties by varying the scale freely and partly canceling the dependence on it via the
matching condition. This effectively pushes the effects ofthe scale variation one order higher in QCD.

The relevant (partial) matching equation for gluon emission is

αs(p
2
⊥)a

0
ijk = αs(µ

2
PS)P

NLLµ
g a0ijk , (91)

which, expanded to first order, easily yields the following form for the scale-stabilizing multiplicative
factor:

gluon emission : PNLLµ
g =

(
1 + αsb0 ln

(
µ2PS
p2⊥

))
, (92)

whereµPS is the renormalization scale used by the shower evolution and the renormalization scale
of αs in the correction term constitutes an ambiguity of yet higher order. In order to be conservative,
we wish to make the effects of the scale cancellation produced by this term as small as possible. We
therefore evaluate theαs in eq. (92) at the largest scale in the2 → 3 splitting, sIK . Any further
optimization would amount to a beyond-NLL effect.

Qualitatively, the scale stabilization works as follows. If µPS is chosen large, then the correc-
tion factor, eq. (92), becomes greater than one, hence partly compensating for the lowerαs value.
Conversely, if a very largeαs is used at the LL level, the logarithm in the correction term becomes
negative, and again acts to stabilize the result. We note that, in extreme cases, the correction term
could in fact become larger than unity. As this would imply a divergent perturbative expansion any-
way, VINCIA therefore restricts the range of allowed values to0 < PNLLµ < 2.

For gluon splitting to quarks, the one-loop antenna functions do not contain universal logarithms
in p⊥. Instead, the universalnf -dependent terms are [36]

nf
2

3
ln (yqq̄) = nf

2

3
ln

(
m2

qq̄

sIK

)
, (93)

wheremqq̄ is the invariant mass of the quark-antiquark pair produced in the splitting. In this case,
we see that the “optimal choice” of renormalization scale isnot p2⊥ but m2

qq̄. The corresponding
scale-stabilizing term for gluon splitting is therefore

gluon splitting : PNLLµ
q =

(
1 + αsb0 ln

(
µ2PS
m2

qq̄

))
. (94)

Again, one can easily verify that theNC-dependent logarithms generated by this choice do partly
cancel similar pieces in the same one-loop antenna functions, and again, the latter cancellation is not
exact due to additional pieces unrelated to renormalization. Finally, we note that since

m2
qq̄ > p2⊥ (95)

over all of phase space, the effect of this stabilization is to reduce the total number of gluon splittings
slightly, as compared to what would be obtained without the stabilization terms and usingαs(p

2
⊥) for

both gluon emissions and gluon splittings, as is traditionally done in shower Monte Carlos.
These scale stabilizing terms have been implemented in the VINCIA code for all2→ 3 splittings

since version 1.020, with an option to switch them on and off to investigate their effects. The default
in the code is to leave them on.
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Figure 12: The value of〈R4〉 differentially over 4-parton phase space, withp⊥ ratios characterizing
the first and second emissions on thex andy axes, respectively. Strong ordering inp⊥ (left) compared
to no ordering (right). Gluon emission only. Matrix-element weights from MADGRAPH [51, 52],
leading color (no sum over color permutations).

Let us emphasize again that this is not a complete one-loop matching. With the scale variation,
we seek only to evaluate — the scale variation. We do not make any assumption that this variation
is representative of the entire remaining uncertainty, on which we have several other, independent,
handles, to which we shall return below. The procedure of employing scale variation alone as a (poor
man’s) estimate of the full uncertainty is obsolete in this framework.

4.2 Improving the Logarithmic Accuracy: 2→ 4

While parton emission using trial branchings can easily be made to cover the full phase space for a
single emission, the same is not true for multiple emissions. Due to the requirement of strong ordering,
some regions of phase space may be inaccessible, leading to so-called dead zones. This also happens
in strongly ordered dipole-antenna showers, for example inregions where several emissions happen
at closely similar emission scales, as shown in ref. [34,54]. Since gluon emission and gluon splitting
processes have different singularity structures and are treated slightly differently, we first consider
the dominant case, that of gluon emission. We then give a few brief remarks about gluon splitting,
although we defer most of the details of that discussion to another publication [55].

4.2.1 Gluon Emission

A plot from ref. [34], showing the dead zone forZ → qggq̄ in a p⊥-ordered dipole-antenna shower,
is reproduced in the left-hand pane of Fig. 12. Each bin of this 2D histogram shows the value ofR4,
eq. (83), averaged over all 4-parton phase space points thatpopulate that bin. The black zone above
the strong-ordering line corresponds exactly to the spike on the left-hand edge of the plots in fig. 10
(the underflow bin).

If one simply removes the strong-ordering condition, equivalent to ordering the emissions only by
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the nesting of the factorized phase spaces, the dead zone obviously disappears. However, this comes
at the price of introducing a substantial double counting, which also extends deep into the ordered
region. We illustrate this on the plot in the right-hand paneof fig. 12, in which〈R4〉 ≫ 1 both in the
unordered region as well as in parts of the ordered region where the agreement was previously good.
Clearly, therefore, the ordered description, in the left-hand pane, is a better overall approximation to
QCD, even if it does include a dead zone.

In order to go further, we must understand the physics behindthe ordered and unordered approx-
imations to the matrix elements. Why is ordering so important? The first exploration of this goes
back to the early eighties. Then, it was realized that partonshowers ordered only in parton virtuality
(which is equivalent to a pure phase-space ordering in that language) represent an essentially incoher-
ent addition of independently radiating monopoles. In phase-space regions where the contributions
from each such monopole term are comparable, interference effects can become large. Without them,
the pure phase-space ordered shower gives a substantial overcounting of those regions, as compared
to matrix elements [28, 29]. As Marchesini and Webber showed[40], this double counting can be
approximately identified with terms corresponding to non-angular-ordered emissions, and hence the
procedure to impose coherence on traditional parton showers has since been to impose such an order-
ing, either implicitly by the choice of evolution variable,as in HERWIG, or explicitly as a veto on the
generated trial emissions, as in PYTHIA .

In dipole-based shower models, soft coherence inside each dipole is guaranteed, regardless of
the ordering variable, by using dipole-based radiation functions instead of the DGLAP ones, but the
problem still exists; it has just been pushed one order higher in the number of interfering partons (see,
e.g., refs. [34, 49]). With pure phase-space ordering, dipole-antenna showers essentially represent an
incoherent addition of independently radiatingdipoles. An independent addition of two such dipoles
would result in a substantial overcounting in all regions where several such dipole terms contribute
simultaneously at similar levels, i.e., in regions where dipole-dipole interference effects (or, equiva-
lently, multipole effects) would be important. Again, it would be interesting to investigate whether
some variant of angular ordering could be used to restore a more coherent behavior, but in the context
of the dipole-antenna formalism we develop here, we have notbeen able to find such a solution. In
part, this owes to a strict ordering in angle having some disadvantages in our language; being frame-
dependent, it would not respect the Lorentz-invariant dipole phase-space factorization we rely on, and
it also classifies a subset of infinitely soft and/or collinear emissions as happening at finite values of
the evolution variable, which would lead to ill-defined evolution integrals, see, e.g., ref. [34].

Instead, let us recall the basic motivation for angular ordering: to approximately remove the dou-
ble counting caused by incoherent addition of interfering diagrams of similar magnitudes. In the
parton shower language, each such term is associated with a divergence in the energy times angle
of the emission. In the region where several terms would nominally be large, the angular ordering
requirement forces at most one of them to contribute — approximating the destructive-interference
effects by killing the non-ordered contributions. In dipole-based approaches, however, the leading
divergence of the gluon radiation functions occurs unambiguously in thep⊥ of the emitted gluon. It
therefore seems sensible to usep⊥ as the measure for the ordering, and thereby implicitly for the size
of each of the contributing terms. As can be seen from the left-hand pane of fig. 12, an ordering in
p⊥, yields a quite good average approximation to the full2 → 4 matrix elements over most of phase
space.

We included the above discussion to motivate that, while there is an important physics issue behind
strong ordering and also behind the choice of functional form of the ordering variable, there is nothing
particularly important about imposing it as a step functionin that variable. On the contrary, the actual
destructive-interference terms in the matrix elements exhibit a smooth behavior. To remove dead
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Figure 13: The value of〈R4〉 differentially over 4-parton phase space, withp⊥ ratios characteriz-
ing the first and second emissions on thex andy axes, respectively. Smooth ordering inp⊥ (left)
compared to smooth ordering inmD (right). Gluon emission only. Matrix-element weights from
MADGRAPH [51,52], leading color (no sum over color permutations).

zones to all orders while simultaneously improving the shower approximation also in the ordered
region, we therefore propose to change the condition of strong ordering to a smoother condition with
the same limiting behaviors.

Specifically, while we retain strong ordering as an option inV INCIA , by default we replace the
strong-ordering condition of conventional parton showersin gluon emission by the smooth suppres-
sion factor

Gluon Emission : Θord P
LL → PimpP

LL =
p̂2⊥

p̂2⊥ + p2⊥
PLL , (96)

wherep̂⊥ is the smallestp⊥ scale among all the color-connected parton triplets in the parent config-
uration (i.e., a global measure of the “current”p⊥ scale of that topology);p2⊥ is the scale of the trial
2→ 3 emission under consideration; andPLL is defined in eq. (82).

Since the antenna function for the previous branching is proportional to1/p̂2⊥, the net effect of
this term, in the unordered region, is to replace that divergence by a damped factor,1/(p̂2⊥ + p2⊥).
The correction is thus constructed such thatPLL remains unmodified in the strongly ordered limit
p⊥ ≪ p̂⊥, and therefore will not affect the leading-logarithmic behavior of the parton shower. It then
drops off to1

2P
LL for p⊥ = p̂⊥, and finally tends smoothly to zero in the limit of extreme unordering,

p⊥ ≫ p̂⊥.
The ratio of the resulting shower to matrix elements is shownin the left-hand pane of fig. 13.

Comparing this distribution with those in fig. 12, we indeed see that not only has the dead zone been
removed, without introducing any serious overcounting of it, but the quality of the approximation has
also been improved inside the ordered region.

For completeness, in the right-hand pane of fig. (13), we alsoshow how the approximation would
have looked if the alternative measurem2

D = 2min(m2
ij,m

2
jk) had been used instead ofp⊥ in the

suppression factor eq. (96). Although there is still clearly an improvement over the pure phase-space-
ordered case — the dead zone has been eliminated — it is much less convincing than forp⊥, as the
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Figure 14: Smoothly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Contents normalized by the numberof generated points.
Gluon emission only. Matrix-element weights from MADGRAPH [51,52], leading color (no sum over
color permutations). Compare to fig. 10 for strong ordering.

weights are larger in the region above the thin horizontal red line.
To illustrate how this approximation evolves with parton multiplicity, we show the distribution of

the log of the PS/ME ratio with this modification, in fig. 14, for Z → 4, 5, and6 partons, including
only leading-color gluon emission. One observes a marked improvement with respect to the strongly
ordered approximations, fig. 10, for all multiplicities. Inparticular, not only the dead zones but
also the large tails towards low PS/ME ratios visible in the higher-multiplicity plots in fig. 10 have
disappeared, which we interpret as a confirmation that the logarithmic accuracy of the approximation
has indeed been improved. Notice, however, that the ARIADNE functions (where we have here used
theψAR kinematics map for bothqg andgg antennæ, hence the explicit label on the plot) still tend to
shift the shower approximations systematically towards softer values, whereas the GGG ones remain
closer to the matrix elements.

4.2.2 Gluon Splitting

For gluon splitting, there is no soft singularity, only a collinear one. This means there is now only a
single log-enhancement (instead of a double log) driving the approximation and competing with the
(uncontrolled) finite terms. It is therefore to be expected that the LL approximation to gluon splitting
is significantly worse, over more of phase space, than is the case for gluon emission.

Furthermore, if the two neighboring dipole-antennæ that share the splitting gluon are veryun-
equal in size, e.g., as a result of a preceding close-to-collinearbranching, then higher-order matrix
elements and splitting functions unambiguously indicate that the total gluon splitting probability is
significantly suppressed. This is not taken into account when treating the two antennæ as independent
radiators. This effect was already noted by the authors of ARIADNE, and a first attempt at including it
approximately was made by applying the following additional factor to gluon splittings in ARIADNE,
in addition to the strong-ordering condition,

Gluon Splitting (ARIADNE) : Θord P
LL → ΘordPAriP

LL = Θord
2sN

sIK + sN
PLL , (97)

wheresN is the invariant mass squared of the neighboring dipole-antenna that shares the gluon
splitting, andsIK is the invariant mass squared of the dipole-antenna in whichthe splitting occurs.
The additional factor reduces to unity when the two neighboring invariants are similar; it suppresses
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splittings in an antenna whose neighbor has a very small invariant mass; and it slightly enhances
splittings in dipole-antennæ whose neighbors have very large invariant masses. This modification is
ad hoc, but formally is beyond LL, and thus does not spoil the shower’s properties at this order. In
practice, it greatly improves the shower’s approximation to matrix elements.

For our purposes here, we first replace theΘ function in ARIADNE by the same smooth unordering
suppression factor we used above,

Gluon Splitting : ΘordPLL → PimpPAriPLL , (98)

which gives an overall approximation at least as good as thatof ARIADNE, without any dead zones.
The overall agreement between even this improved gluon splitting and explicit matrix elements is
still far from perfect, however, due to the intrinsically smaller relative size of the logs driving the
approximation. We are in the process of preparing a more dedicated study of this issue, including
quark mass effects [55], and hence defer further discussionof this topic for the time being. For later
convenience, we define this adjustment factor to be unity forgluon emission,

Gluon Emission : PAri = 1 , (99)

Gluon Splitting : PAri =
2sN

sIK + sN
. (100)

4.3 Subleading Color

In the dipole-antenna formalism, a general result [56] is that the subleading-colour effects in a single
qgg...gq̄ chain can be taken into account by including a subleading antenna spanned directly between
the q and q̄ associated with a color factor−1/N2

C relative to the leading-color antennae (which are
proportional toCA).

However, in the context of a probabilistic framework, such as shower Monte Carlo algorithms, the
negative sign of this antenna means it cannot be treated on the same footing as the (positive-definite)
LC ones5. Moreover, it is not possible to define a unique LC color assignment to the emissions
generated by it, and hence the subsequent shower evolution (and the infinite-order approximations
generated by it) would be ill-defined.

Instead, in traditional parton-shower applications, thiscorrection is partly treated by associating
quark emission terms withCF instead ofCA, thereby correctly absorbing the collinear singularities
of the correction term into the LC ones, at the price of introducing a subleading-color ambiguity in
the soft singularity structure. To improve on this, one could imagine, e.g., trying to be more clever
about in which phase-space regions to useCF and in whichCA even for emissions off gluons [57].
But in both cases the simplicity of the correction term wouldthen be less explicit.

Instead, we here attempt to reabsorb the subleading-color correction systematically into the leading-
color antennæ, using a smooth partitioning, which integrates to reproduce the double poles of the
corresponding subleading-color one-loop antenna functions.

Consider the evolution integral off ann-parton configuration in the massless approximation:

∑

IK∈LC

∫
dsij dsjk

ãIK(yij , yjk)

s2IK
, (101)

5One could in principle imagine flipping the sign of the event weight when generating emissions with it, but such a
procedure would drive the convergence rate of the resultingalgorithm to become infinitely slow at asymptotically large
energies.
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whereã is a dimensionless antenna function, and the scaled invariants are defined byyij = sij/sijk =
sij/sIK , and where the sum is over all color-connected pairs, that isall LC antennæ. Changing
integration variables to dimensionless quantities, the integration measure becomes independent of the
size of the antenna phase spaces and we may replace the sum of integrals by the integral of a sum, to
which we can add a subleading-color piece,

∫
dyij dyjk

[ ∑

IK∈LC

ãIK(yij, yjk)−
1

N2
C

ãNLC(yij , yjk)

]
. (102)

Finally, we may partition the correction term among the LC pieces by introducing a partitioning
function,f ,

=

∫
dyij dyjk




∑

IK∈LC

ãIK(yij, yjk)

(
1− fIK

N2
C

ãNLC(yij, yjk)

ãIK(yij, yjk)

)

︸ ︷︷ ︸
PNLC



, (103)

where the underbraced term can now be implemented straightforwardly as a veto probability,PNLC ,
in the shower evolution.

For f to be a consistent partitioning, it must give unity when summed over all the LC antennae.
The prescription we use is to absorb corrections into each term in proportion to the relative size of
that term, i.e.,

fIK =
ãIK(yij, yjk)∑

AB∈LC ãAB(yar, yrb)
. (104)

For the functional form of̃a, we give two options,

1. Only the Eikonal part of theqq̄ antenna function is included iñaNLC , corresponding to

ãNLC(yij, yjk) =
2(1− yij − yjk)

yijyjk
(105)

This integrates to give the correct1/ε2 poles of the1/N2
C piece of the one-loop antenna func-

tion (calledÃ1
3 in ref. [36]).

2. The fullqq̄ antenna function (calledA0
3 in [36]) is included inãNLC , corresponding to

ãNLC(yij, yjk) =
2(1− yij − yjk)

yijyjk
+
yij
yjk

+
yjk
yij

(106)

This integrates to give the correct1/ε2 and1/ε poles of the1/N2
C piece of the one-loop antenna

function (calledÃ1
3 in ref. [36]).

For the corrected emission probability to be positive definite, the condition

ãNLC <
N2

C

fIK
ãIK (107)

must be fulfilled. The Eikonal terms are guaranteed to respect this by a wide margin, but there
can in principle be subleading differences betweenãIK andãNLC at the level of single poles and/or
finite terms, both of which can be influenced to some extent by user-controlled settings in VINCIA .
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Figure 15: LC and NLC parton showers compared to matrix elements. Distribution oflog10(PS/ME)
in a flat phase-space scan. Contents normalized by the numberof generated points. Gluon emission
only. Matrix-element weights from MADGRAPH [51, 52], full color (summed over color permuta-
tions). Compare to figs. 10 and 14. Note: the black histogram here does not look identical to the one
in fig. 10; this is because the distribution shown here is after summation over all color-permutations.
Also, the shower expansion here usesCA for bothqg andgg emission antennæ. The same is true for
the thin solid line, as compared to the solid histogram in fig.14.

Although we have not encountered any problems with such corrections becoming large in our own
studies so far, we have inserted a numerical safeguard in thecode, limiting the size of each NLC
correction to be at most half of the corresponding LC term.

We compare the shower expansion corrected as in eq. (103), using the definition of̃aNLC given by
eq. (106), to color-summed matrix elements in Fig. 15, forZ → 5 andZ → 6 partons (gluon emission
only), for both the strong- and smooth-ordering options. For reference, we show the pure LC shower
expansions as well, as in figs. 10 and 14, although we here set both theqg andgg color factors equal
to CA, to better illustrate what happens when only the NLC correction is switched on and off. Note
also that the previous comparisons in this paper were made toleading-color matrix elements for each
individual color structure separately. Such a comparison is not meaningful once color interference
effects are taken into account, and hence we are here using the full color-summed matrix elements,
and are likewise summing over permutations of the gluon momenta in the shower expansion.

Firstly, we notice that the LC shower expansions do indeed overcount the matrix elements if we
just useCA for both qg andgg antennæ, as expected (the solid filled histogram and thin solid lines
are shifted to the right of the vertical dot-dashed line thatrepresents perfect agreement). When we
switch on the NLC correction in the manner described above, both the strongly and smoothly ordered
approximations are noticeably improved, cf. the blue dashed and thick solid curve, respectively. The
NLC correction is therefore switched on by default in the VINCIA code.

The procedure described above is correct for the case of a single qgg...gq̄ chain and then correctly
takes into account the infrared singularities arising fromthe first subleading-color term, which is
proportional to1/N2

C . We refer to this modification as “next-to-leading color” orNLC. (Strictly
speaking, there are also corrections proportional to1/NC , but these are already taken into account
in leading-color showers by includingg → qq̄ splittings.) However, due to the inherent ambiguity
in assigning a color flow to these corrections even in the softlimit, we cannot be certain that further
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subleading terms are also correctly described. I.e., we do not expect to reproduce the correct1/N4
C

terms in all singular limits.
When there are several colour chains, such as after ag → qq̄ splitting (and hence already sup-

pressed by at least1/NC ), we generalize the treatment to each chain separately. That is, we do not at
this point attempt to include interference effectsbetweendifferent color-singlet systems.

5 Matching

In this section, we describe our strategy for incorporatinga detailed matching to tree-level matrix
elements. The philosophy is similar to that pioneered by Sj¨ostrand in refs. [28,29], and hence also to
the POWHEG formalism, but we here generalize the method to include arbitrary-multiplicity tree-level
matrix elements. The inclusion of the NLO virtual corrections to the lowest multiplicity was treated
in ref. [33] for an arbitrary tree-level matching strategy.

5.1 Matching Strategies

Given a parton shower and a matrix-element generator, thereare fundamentally three different ways
in which we can consider matching the two:

1. Unitarity: The oldest approach [28, 29] consists of working out the shower approximation to a
given fixed order, and correcting the shower splitting functions at that order by a multiplicative
factor given by the ratio of the matrix element to the shower approximation, phase-space point
by phase-space point. We may sketch this as

Matched= Approximate
Exact

Approximate
. (108)

That is, the shower approximation is essentially used as a pre-weighted (stratified) all-orders
phase-space generator, on which a more exact answer can subsequently be imprinted order
by order in perturbation theory. In our notation [33], this translates to applying the following
correction factor to each antenna functionai (or any other kind of shower splitting kernel)

ai → aiP
ME
n , PME

n =
|Mn|2∑

j aj|Mn−1|2
, (109)

where the sum overj runs over all possible ways the shower could have generated the n-
parton state fromn − 1 partons6. So long as the adjustment factorsPME are less than or
equal to one, they can be interpreted as probabilities, and the adjustment can be accomplished
by means of the veto algorithm Monte-Carlo technique. This constraint can essentially al-
ways be satisfied through appropriate choice of the finite terms in the antenna functionsai.
When these correction factors are inserted back into the shower evolution, they guarantee that
the shower evolution offn−1 partons correctly reproduces then-parton matrix elements, with-
out the need to generate any separaten-parton samples. Moreover, since the corrections modify
the actual shower evolution kernels, the corrections areresummedin the Sudakov exponen-
tial, and finally, since the shower isunitary, an initially unweighted sample of(n − 1)-parton

6Note, however, that this gets substantially more complicated if the shower process is not completely Markovian, a point
we shall return to.
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configurations remains unweighted, with no need for a separate event-unweighting or event-
rejection step. (Technically, the exponentiation allows beyond-LL corrections to be resummed,
thus improving the logarithmic accuracy of the result, while the explicit constraint of unitarity
ensures that the additional non-logarithmic terms that arealso exponentiated by this procedure
do not lead to disasters.) There are thus several quite desirable features to this kind of match-
ing strategy, which is currently employed by PYTHIA , POWHEG, and VINCIA . However, since
traditional shower expansions quickly get more complicated as a function of the number of
emissions, this strategy had only been worked out for a single additional emission prior to this
paper (although the MENLOPS strategy [26] does allow to combine a unitary matching of the
first emission with traditional non-unitary methods for multi-jet matching). Below, we shall
generalize the unitarity method to arbitrary multiplicities and, as a proof of concept, present
a concrete implementation spanning four successive emissions, including all subleading color
terms.

2. Subtraction:Another way of matching two calculations is by subtracting one from the other
and correcting by the difference, schematically

Matched= Approximate+ (Exact− Approximate) . (110)

This looks very much like the structure of an NLO fixed-order calculation, in which the shower
approximation plays the role of subtraction terms, and indeed this is what is used in strategies
like MC@NLO [22, 58, 59]. In particular since eq. (110) appears much simpler to the fixed-
order community than eq. (108), this type of approach has received much more attention than
the unitarity-based one above (though, to be fair, the POWHEG [30] approach represents a kind
of hybrid between the two). In this approach, the corrections arenot resummed; the events are
not unweighted— we can even have negative weights, at phase-space points where the approx-
imation is larger than the exact answer; and we need aseparate phase-space generatorfor the
n-parton correction events. And finally, like for the unitarity-based case above, a systematic
way of extending this strategy beyond the first additional emission was not previously avail-
able. All these issues are, however, less severe than in ordinary NLO approaches, and hence
they are not viewed as disadvantages if the point of reference is an NLO computation. Since
the correction terms are applied by adding (or subtracting,depending on the sign of the weight)
events, we refer to this type of matching strategy assubtraction.

3. Slicing: The last matching type is based on separating phase space into two regions, one of
which is supposed to be mainly described by hard matrix elements and the other of which is
supposed to be described by the shower. Basically, this amounts to a subtractive approach
in which the shower approximation is set to zero above some scale (effectively a dead zone
is forced on the shower by vetoing any emissions above a certain matching scale), causing
the matched result to be the unsubtracted matrix element in that region, modulo higher-order
corrections,

Matched (above matching scale)∼ Exact(1 +O(αs)) , (111)

and since the leading behavior of the matrix elements and theshower approximation are as-
sumed to be the same below the matching scale, the small difference between them can be
dropped, yielding the pure shower answer in that region,

Matched (below matching scale)= Approximate+ (Exact− Approximate) ∼ Approximate.
(112)
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Since this strategy is discontinuous across phase space, a main point here is to ensure that the
behavior across the matching scale be as smooth as possible.CKKW showed [6] that it is possi-
ble to remove any dependence on the matching scale through NLL precision by careful choices
of all ingredients in the matching; technical details of theimplementation (affecting theO(αs)
terms in eq. (111)) are important [13]. The MLM [4, 18] approach is also an example of this
type of matching. However, we note that the slicing strategyinherits almost all of the problems
that pure subtraction has; the corrections arenot resummed, the events arenot unweighted(but
at least we avoid the negative-weight issue), and we need aseparate phase-space generator
for the n-parton correction events. In addition, the dependence on the unphysical matching
scale has appeared, which in general is non-vanishing and may be larger than NLL unless the
implementation matches the theoretical algorithm precisely [13]. However, due to the work of
CKKW and others [6, 13, 14, 18], a systematic way of extendingthis strategy beyond the first
additional emissionis available, and a strategy has even been proposed whereby this matching
type could be extended to NLO precision [60]. The MENLOPSapproach [26] is also available
to combine it with POWHEG. Since this type is already well developed, therefore, we shall not
consider it further in this paper, but note that one could still obtain it from our formulae for
subtractive matching (eq. (22) of ref. [33]), by inserting the appropriate phase-space cutoffs at
the matching scale. For this reason, we refer to this strategy asscale-basedor slicing.

To summarize, in this paper, we focus on the extension of theunitary matching strategy to arbitrary
numbers of emissions at tree level. We shall also include an NLO matching to the Born multiplicity
using the prescription from ref. [33].

5.2 Matching to Tree-Level Matrix Elements: Leading Color

The formalism we shall describe here represents a generalization of the one presented in ref. [33]. It is
based on using the trial generator described in the previoussection as a phase-space generator, whose
phase-space weights can be expanded to the required order and compared to the matrix-element an-
swer at the same order. A correction can then be imposed before generating the next trial emission.
For comparison, most other approaches are currently based on generating separate event samples for
different jet multiplicities and then post facto attempting to remove the overlaps (“double counting”)
between them. Here, we generate one sample ab initio, where every event starts at the lowest multi-
plicity and is then successively matched up to the desired orders.

Compared to shower evolution, matrix-element (ME) evaluations are computationally intensive.
It is therefore desirable that the matching algorithm involve as few ME evaluations as possible. In an
ordinary shower approach, the effective weight of each phase-space point depends on all the possible
shower histories that could contribute to it, resulting in afactorially increasing dependence on the
multiplicity (for each color configuration). In CKKW-type approaches, this is partly circumvented by
always selecting only one history, the “most singular one” according to thekt algorithm. Since this
does not exactly correspond to an inversion of the parton shower, the matching only really addresses
the LL overlaps, and the higher-order discrepancies are “removed” by introducing an explicit cut on
the phase-space region in which matching is applied, by the so-called “matching scale”, which limits
the numerical size that any subleading divergence could attain.

In contrast, since we match at each successive order, each emission (up to the matched orders) will
necessitate at least one matrix-element evaluation as wellas the corresponding shower weight, which
in turn will involve matrix-element evaluations at the preceding orders. At first sight, this may sound
extremely expensive. Note, however, that we are doing the matching of “all the samples” once and for

41



all, so that only one “run” will be necessary, rather than a separate one for each multiplicity. (Separate
“runs” for different multiplicities would then spread a comparable number of matrix-element evalu-
ations across the different “runs”.) In that context, the scheme should not be more expensive than
current ones, provided that a formalism can be found that minimizes the number of matrix-element
evaluations that are still necessary to determine the trialweight.

One sufficient condition for minimizing the number of required matrix-element evaluations is the
Markov condition: each shower step should depend only on thecurrentn-parton configuration and
not on its previous history. This in turn implies that, in order to compute the trial weight, only the
histories one step back have to be considered, rather than all possible clusterings all the way to the
Born. As mentioned above, this would not be true of ordinary strongly-ordered parton showers, where
therestartscale for each configuration would depend onwhichparton was the last emitted one.

A simple prescription thatdoesobey the Markov condition is to generate trial emissions forevery
antenna in then-parton configuration over their full phase space, irrespective of the current ordering
scale. Without matching, this would lead to a large overcounting, as was illustrated in fig. 12, but with
matching, the total shower weight can be calculated and the corresponding matrix-element correction
made, with two added benefits: 1) the removal of the strong-ordering condition explicitly prevents
any dead zones from appearing in the trial space, and 2) sincethe trial weight generated this way
will represent an overestimate, it will be possible to impose the matching by multiplying by a factor
smaller than unity, which can be translated into a probabilistic veto of the trial branching.

Expanded to tree level (all Sudakovs set equal to unity, fixedαs), the trial generator will produce
the following total weight for a specific color-ordered point in (n + 1)-parton phase space when
summed over possible contributingn-parton ones,

wtrial
n+1({p}n+1) =

∑

j

atrial−j({p̂n}[j] ← {p}n+1) |M (0)
nLC({p̂}[j]n )|2 , (113)

where{p}n+1 represents the color-ordered momenta of the(n + 1)-parton state,j runs over the

possiblen + 1 → n clusterings, and{p̂}[j]n represents the color-ordered set ofn momenta obtained
by thej’th 3 → 2 clustering of the(n + 1)-parton state according to the selected kinematics map. It

is important to note that|M (0)
nLC|2 here represents the tree-level squared amplitude for the particular

color configuration under consideration, i.e., without anycolor averaging performed.
The improved matching to smoothly ordered LL antenna functions described in sec. 4.2.2 merely

consisted of multiplyingatrial−j in eq. (113) by the LL smooth-ordering accept probability, thus
replacing the trial factors by their LL counterparts,

LL Matching : atrial−j → aPSj = PPS
accept-j atrial−j , (114)

wherePPS
accept−j expresses the unmatched shower accept probability, including the LL acceptance

probability,PLL, of eq. (82) and the improvement factorsPimp of eq. (96) andPAri of eq. (97),

PPS
accept-j = PimpPAriP

LL . (115)

We shall now apply a final multiplicative accept probability, PME
n+1, defined such that it takes us

from the approximation that would have been generated byPPS
accept-j alone to the full matrix element.

It has the simple definition

PME
n+1 =

|Mn+1({p}n+1)|2
∑

k a
PS
k ({p̂}[k]n ← {p}n+1) |Mn({p̂}[k]n )|2

, (116)
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whereaPSk was defined in eq. (114). By summing over all shower histories, this can easily be verified
to generate the correct total weight. Note also that, the ME accept probability does not have any
dependence onj and is thus the same for all contributingn→ (n+ 1) branchings.

Note thatPME
n+1 involves one evaluation of|Mn+1({p}n+1)|2 and one evaluation of each of the

reclustered configurations,|Mn({p̂}[k]n )|2 (one for each possibility for[k], of which one has already
been evaluated as part of the current matched shower history), and hence the total number of matrix-
element evaluations required at each order grows linearly with the multiplicity, rather than factorially
as would have been the case for a non-Markov evolution.

Note also that, since we make no distinction between “showerevents” and “correction events”, we
may use the showerαs as a common prefactor on all the accept probabilities. Thereis thus only one
αs for each history. Due to the scale-canceling partial one-loop matching discussed in sec. 4.2.2, the
default, to one-loop accuracy, is thus to useαs(p⊥) for all the terms, regardless of other scale choices
made in the generator.

Another convenient way of writingPME
n+1 is the following,

PME
n+1 = 1 +

|Mn+1({p}n+1)|2 −
∑

k a
PS
k ({p̂}[k]n → {p}n+1)|Mn({p̂}[k]n )|2

∑
k a

PS
k ({p̂}[k]n → {p}n+1)|Mn({p̂}[k]n )|2

, (117)

where the connection to the subtraction approach describedin ref. [33] (as well as to other subtrac-
tion schemes) becomes readily apparent, since the numerator in eq. (117) is nothing but a shower-
subtracted matrix element.

In order to transform the unitary strategy described here toa non-unitary subtractive one, it would
therefore suffice to apply the factor, eq. (117), as an event reweighting, rather than as a branch-accept
probability. The events then do not have unit weights any more, and a subsequent unweighting step
would be necessary, as in other subtractive approaches. Thefact that we are here doing the matching
phase-space point by phase-space point, however, means that we here have the ‘1+’ in front, which
should mean that even the subtraction-based version could never generate negative weights. In current
subtraction approaches such as MC@NLO, the ‘1+’ is generated as a separate sample, and in that case,
the correction term by itself can of course yield negative correction events. The cancellation here is
more elegant and not only yields positive-weight events butis also better protected from fluctuations;
in MC@NLO and POWHEG, each event sample is uncorrelated and therefore the phase-space point of
an event will never be hit exactly by the counter-events. In limited-statistics samples, it is therefore
events with slightly different momenta that have to compensate each other, whereas the proposal here
achieves an exact cancellation in one and the same phase-space point, event by event. Thus, instead
of having one event with weight +3 and one with weight -1, we would here simply get one event with
a total weight of +2.

A final technical note is that the MADGRAPH matrix elements must be evaluated on-shell, and
hence one must first set the value of the MADGRAPHZ mass equal to

√
s, even if this is not equal to

the physicalZ mass; the important thing is that the incoming momentum be on-shell. We also set the
value of the strong couplinggs = 1 in MADGRAPH, equivalent to factoring it out of the problem.

5.3 Matching to Tree-Level Matrix Elements: Subleading Color

When summing over all events, the full answer contains an averaging over all permutations of color
orderings in every phase-space point. In event generators,two different color structures in one and
the same phase-space point are viewed as two different events with thesamecolor structure, but in
two different phase-space points. Via the matching above, this sum now reproduces the leading-color

43



tree-level color-averaged matrix element squared. We wishto extend this to include the subleading-
color contributions as well. Obviously, these cannot be associated with any particular color structure,
and we must therefore here match across events in different phase-space points (or, equivalently, the
same momentum configuration, but different color orderings).

When matching to subleading color, we shall use the specific structure of matrix elements gen-
erated with MADGRAPH and imported into the VINCIA code. The color structure of these matrix
elements is cast as a color matrix whose diagonal entries form the leading-color contributions. Each
diagonal entry corresponds to one particular color ordering, hence summing over all the diagonal
terms and dividing by the number of rows (= number of permutations) is equivalent to averaging over
colors, in the leading-color limit. The leading-color matching described above thus corresponds to
matching to a MADGRAPH matrix element with only one diagonal term being non-zero inthe entire
color matrix, representing the particular color structureused in the matching.

In order to include subleading color, a simple and sufficientprescription is to compute also the
full color-summed matrix element and include a fraction of it in the matching to each color structure,
by modifying the LC matrix elements in eqs. (116) and (117) asfollows,

|Mi|2 → |Mi|2 +
|Mi|2∑
j |Mj |2

∑

j 6=k

MjM
∗
k (118)

= |Mi|2
(
1 +

∑
j 6=kMjM

∗
k∑

j |Mj |2

)
(119)

= |Mi|2
(∑

j,kMjM
∗
k∑

j |Mj |2

)
, (120)

whereMi is the amplitude for one specific color ordering. The numerator in the last parenthesis is
just the full color-summed matrix element squared, and the denominator is the corresponding leading-
color one. Since both of these are well-defined leading-order physical matrix elements, the term in
parenthesis is positive definite and hence cannot generate negative weights.

Note that, in VINCIA ’s interface to MADGRAPH, we have so far been using the form in eq. (118),
since this is the fastest in the context of that particular implementation. In order to compare between
the leading- and full-color cases, we have implemented an option to switch the subleading corrections
off, although they are on by default in the program.

In fig. 16, we show the weight ratios discussed earlier (whichare essentially just the inverses of
PME
n ), for Z → 5 andZ → 6 partons, now including matching at each preceding order. For the

shower approximations, we use the default smoothly orderedNLC-improved GGG antennæ, with
three different kinematics maps (solid histogram, thin solid line, and dashed lines, respectively). We
also compare to the same settings as the solid histogram but using the ARIADNE radiation functions
instead of the GGG ones (thick solid lines). Comparing thesedistributions to those in fig. 14, we
see that all the shower models reproduce the matrix elementsvery well, and hence the differences
between the shower models are largely canceled by the matching to the preceding orders, as expected.
At each order, now only a relatively well-controlled and stable matching correction remains, which
does not appear to exhibit any significant deterioration order by order. Note that we have not applied
anyphase-space cuts here, and hence we find no evidence for any remaining subleading divergences
in the matrix elements. This is in sharp contrast to slicing-or subtraction-based approaches, where a
non-zero matching scale is obligatory beyond the first matched order.
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Figure 16: Smoothly ordered matched parton showers (unordered showers using the improvement
factorsPimp andPAri) compared to matrix elements. Distribution oflog10(PS/ME) in a flat phase-
space scan. Contents normalized by the number of generated points. Gluon emission only. Matrix-
element weights from MADGRAPH [51, 52], full color (summed over color permutations). Compare
to the unmatched shower distributions in figs. 10, 14, and 15.

5.4 A note on MADGRAPH and GGG color factor normalizations

As a final remark, we note that the subleading-color terms arenot uniquely defined. Obviously, if
the leading-color pieces are not normalized the same way in two different approaches, the sublead-
ing terms must likewise appear different. This, e.g., leadsto some apparent differences between
MADGRAPH and the GGG antennæ. With color and coupling factors, the MADGRAPH-GGG corre-
spondence for theZ → qggq̄ antenna is:

g4sA
GGG
4 (0, 1, 2, 3) =

2|M4LC(0, 1, 2, 3)|2
Ĉ2
F |M2(s)|2

, (121)

where the factor2 on the MADGRAPH matrix element cancels the color averaging factor which is
already present in|M4LC|2, which represents a MADGRAPH matrix element with only one element
non-zero in the color matrix, the one corresponding to the(0, 1, 2, 3) color flow squared. In particular,
note that the LC coefficient in MADGRAPH comes withĈ2

F , whereas, in order to construct the full
answer, i.e., including subleading color, the GGG antennæ should be combined in the following way,

|M4|2
|M2|2

= g4s ĈFCA

(
1

2
a4(0, 1, 2, 3) +

1

2
a4(0, 2, 1, 3) −

1

N2
C

Ã4(0, 1, 2, 3)

)
. (122)

A direct comparison between what would be called subleadingcolor by GGG and by MADGRAPH,
respectively, would thus yield a different answer, simply because the piece called LC is normalized to
CAĈF in the former and tôC2

F in the latter. To verify these normalizations, the validityof eqs. (121)
and (122) was tested numerically on a large number of phase-space points.
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6 Uncertainty Bands

A calculation is only as good as the trustworthiness of its uncertainty bands. Traditional methods
for evaluating shower uncertainties range from simple comparisons between different models to more
elaborate variations of salient model parameters within some theoretically or phenomenologically
justified ranges.

The former kind is, at best, indicative, but can also be grossly misleading. As a classic example,
consider two different parton showers with a cutoff at some factorization scale. They would both agree
there are no jets above that scale, even though a matrix-element-based calculation would certainly
produce jets in that phase-space region. Comparisons of theHERWIG − PYTHIA kind are therefore
of little value when pursuing rigorous uncertainty estimates.

Systematic variation of salient model parameters obviously gives a more trustworthy idea of the
overall uncertainty, and can also give information about which particular sources dominate. However,
it requires more careful preparation and more expert input to set up: which parameters to vary, within
what ranges, and how to make sure the variations are done consistently when combining many tools
in a long chain of event generation. It also requires substantially more time and resources: for each
variation, a new set of events must be generated, matched, unweighted, and possibly passed through
detector simulation. Finally, the ability of a single modelto span all possible variations is often limited
— similarly to above, you still cannot use a strongly orderedshower to estimate what the uncertainty
associated with the strong-ordering condition itself might be. There is also no way that, for instance,
PYTHIA ’s shower model could be varied to obtain an estimate of what an angular-ordered shower
would give.

Here, we propose to combine the flexibility of the VINCIA formalism to take into account different
ordering variables, radiation functions, etc., with a treatment of uncertainties that only involves the
generation of asingleevent sample, with a time requirement that is not greatly increased compared
to the case without uncertainty variations. We shall also automate the expert input to some extent,
reducing the number of choices the user must make.

The key question to ask is: if we use (matched) parton shower model A to generate a set of
unweighted events, what would the weight of each of those events have been if we had instead used
parton shower model B to generate them? By answering this question, we can essentially use any
parton shower model as a “phase space primer”, provided it isstill reasonably physical and that it
does not have any dead zones, and then compute alternative weights for the same eventsfor any other
set of assumptions.

The most trivial part is to note that, if a particular shower model usesαs1a1 as its radiation function
for a particular branching, the same branching would have happened with the relative probability

P2 =
αs2a2
αs1a1

P1 , (123)

in a different model that usesαs2 as its coupling (e.g., with a different renormalization scale or
scheme) anda2 as its radiation function (e.g., with different finite terms, different partitioning of
shared poles, different subleading or higher-order corrections, or even a different ordering criterion).

This, however, is not quite sufficient. Effectively, only the tree-level expansion of the shower
would be affected by keeping track of such relative probabilities down along the shower chain; the
Sudakov factors would remain unmodified. Such a procedure would therefore explicitly break the
unitarity that is essential to resummation applications, leading to possibly exponentially different
weights between the sets, which would be hard to interpret7. More intuitively, a big uncertainty

7For example, two models that differ systematically by only asmall amount on each branching, say 25%, would, after
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on a very soft branching happening late in the shower should not be able to significantly change the
entire event weight, jets and all. In the normal shower approach, it is the property of unitarity which
keeps such things from happening; as soon as any correction grows large, its associated Sudakov
factor must necessarily become small soon thereafter, keeping the total size of any correction inside a
unit-probability integral.

The main part of our proposal therefore concerns a simple wayto restore unitarity explicitly also
for the uncertainty variations, as follows. For each accepted branching, a number of trial branchings
have usually first been generated and discarded, to eliminate the overcounting done by the trial func-
tion. In VINCIA , we have so far not been particularly careful to optimize thechoice of trial function
(see sec. 3.2), and hence we have quite many failed trials. These are relatively cheap to generate, how-
ever, so the code is not significantly slowed by this inefficiency. Moreover, these failed trials actually
turn out to be useful, even essential, in the present context.

Just as eq. (123) expresses the relative probability for a branching to be accepted under two differ-
ent sets of model parameters, 1 and 2, with 1 playing the role of phase-space generator and 2 the role
of uncertainty variation, it is also possible to ask what theprobability of afailed trial to have failed
under different circumstances would have been. Thus each failed trial can actually be used to compute
variations on the no-emission probability, i.e., the Sudakov factors.

Specifically, for each trial, the no-emission probability for the model we use as our phase-space
generator (which corresponds to the settings chosen by the user in VINCIA , including matching, sub-
leading corrections, etc.) is

P1;no = 1− P1 , (124)

whereas the one for the alternative model should be

P2;no = 1− P2 = 1− αs2a2
αs1a1

P1 . (125)

Thus, by multiplying the relative event weightw2/w1 by P2/P1 for each accepted branching and
by P2;no/P1;no for each failed one, we explicitly restore the unitarity of the set of weights{w2}. In
order to prevent extreme outliers from substantially degrading the statistical precision of the variation
samples, however, we limit the resulting weight adjustments to at most a factor of 2per branchingin
the code (in either direction). The adjustment of the weights for the failed branchings takes the place
of ‘unfailing’ those which should have succeeded with model2.

The accuracy of the approach obviously depends on the abundance of failed branchings. If the trial
function is completely exact, and no branching ever fails, then the tree-level problem above will still
occur. However, since VINCIA typically generates significantly higher numbers of failedbranchings
than accepted ones, its effective numerical mapping of the changes in the Sudakov factors during the
no-branching evolution periods should be reasonably accurate.

To test whether the uncertainty bands produced in this way really reproduce what the shower
model would have generated with different settings, we showa few distributions in Figs. 17 and 18,
with default VINCIA (thin blue line) plus an uncertainty variation (light blue band) on the left-hand
side, and VINCIA run with the actual settings corresponding to that variation on the right, for variations
of the renormalization scale (Fig. 17) and of the antenna function finite terms (Fig.18). In order to
maximize the result of the variations, all matching is switched off, and hence the uncertainty bands
are rather larger than would be the case for default VINCIA settings. The L3 data (black points) [61]
are included mostly to provide a constant reference across the plots; we postpone the discussion of the

20 such branchings, differ by a factor1.2520 = 100. If they differ by a factor of 2 instead, the result would be a million,
clearly not a reasonable correction to the total event rate.
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Figure 17: Comparison ofunmatchedresults from VINCIA’s automatic uncertainty variations inthe
Thrust observable around the default parameter set (left) with those from running the generator for
each variation separately (right), for variation of the renormalization scale. The L3 data taken from
ref. [61] is shown for comparison. The yellow band in the lower plots represents the experimental
uncertainties on the thrust measurement.

data comparison to sec. 8, where we discuss LEP observables.The top panels of each the plots shows
MC compared to data, with both normalized to unity. The bottom panels show the ratio MC/data, with
the uncertainties on the data shown as yellow shaded bands, the inner (lighter) one corresponding to
the statistical component only and the outer (darker) shadecorresponding to statistical plus systematic
errors (added linearly, to be conservative).

Comparing Figs. 17 and 18, one observes that the two different variations lead to qualitatively
different shapes on the uncertainty predictions. The renormalization scale uncertainty, Fig. 17, pro-
duces an uncertainty band of relatively constant size over the whole range of Thrust, whereas the finite
terms, Fig. 18, only contribute to the uncertainty for largevalues of1−T , as expected. Comparing left
to right in both figures, we conclude that both the features and the magnitude of the full uncertainty
bands on the right are well reproduced by the weight variations on the left.

Available Variations: So far, five types of automatic variations have been includedin the VINCIA

code, starting from version 1.025, via a simple on/off switch. These uncertainty variations are:

• V INCIA ’s default settings. This is obviously not a true uncertainty variation, but is provided as
a useful comparison reference when the user has changed one or more parameters.

• MAX and MIN variations of the renormalization scale. The default variation is by a factor of 2
aroundp⊥.

• MAX and MIN variations of the antenna function finite terms, as described in the online docu-
mentation of the code8.

• Two variations in the ordering variable, one being closer tostrong ordering inp⊥ and the other
to ordering in themD variable.

8Available athttp://projects.hepforge.org/vincia/.
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Figure 18: Comparison ofunmatchedresults from VINCIA’s automatic uncertainty variations inthe
Thrust observable around the default parameter set (left) with those from running the generator for
each variation separately (right), for variation of the antenna-function finite terms. The L3 data taken
from ref. [61] is shown for comparison. The yellow band in thelower plots represents the experimental
uncertainties on the thrust measurement.

• MAX and MIN variations of the subleading color corrections.The specific nature of the vari-
ation depends on whether subleading corrections are switched on in the shower or not. If not,
the MAX variation usesCA for all gluon emission antennae and the MIN oneĈF . If switched
on, the correction described in Section 4.3 is applied, but the correction itself is then modified
by±50% for the MAX and MIN variations here.

These variations are provided as alternative weight sets for the generated events, which are available
through methods described in the program’s online manual. Limited user control over the variations
is also included, such as the ability to change the factor of variation of the renormalization scale.

When combining several variations to compute the total uncertainty, we advise to take just the
largest bin-by-bin deviations (in either direction) as representing the uncertainty. We believe this is
better than adding the individual terms together either linearly or quadratically, since the latter would
have to be supplemented by a treatment of unknown correlations. With the maximal-deviation ap-
proach, we are free to add as many uncertainty variations as we like, without the number of variations
by itself leading to an inflation of the error.

We should also note that, in the VINCIA code, matching coefficients etc. are calculated for each
uncertainty variation separately. The size of each band is therefore properly reduced, as expected,
when switching on corrections that impact that particular source of uncertainty.

Finally, we note that, though the speed of the calculation istypically not significantly affected by
adding uncertainty variations, the code does run slightly faster without them. We therefore advise to
keep them switched off whenever they are not going to be used.

7 Hadronization

Since the VINCIA code is a plug-in to PYTHIA , it is (almost) trivial to use PYTHIA ’s string hadroniza-
tion model with VINCIA , as long as one takes into account a few basic points:
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• The matching of parton showers to hadronization models.

• The “tuning” of the resulting shower+hadronization framework.

Concerning the matching of parton showers to hadronizationmodels, the main issue to keep in
mind is that this matching is performed at a specific scale, the hadronization scale, which is imple-
mented as a lower cutoff in the perturbative shower evolution, usually at a scale of order 1 GeV. Since
no perturbative evolution is carried out below that scale, the job of the hadronization model is then
to give as good a representation as possible ofall the physics that takes place at lower scales. Since
the hadronization model is inherently non-perturbative, this means that the cutoff cannot be taken too
high, or else it would become apparent that the hadronization model does not include a good descrip-
tion of the perturbative parts. Vice versa, the cutoff cannot be taken too low, or else it would become
apparent that the perturbative modeling does not include a good description of the non-perturbative
parts. This is how one ends up with scales of order 1 GeV as the matching point.

In principle, if the cutoff is varied around that point, boththe perturbative shower and the non-
perturbative modeling parameters should obey evolution equations that tell how each should scale, so
that the end result would be approximatively independent ofthe cutoff. These evolution equations
are nothing but an inclusive version of the shower evolutionequations, which the shower obviously
respects by definition.

But there is so far no formalism for the non-perturbative modeling that allows us to take parameters
“tuned” with one value of the cutoff and translate them for use with another value for the cutoff. Hence
each setting of the parameters of the hadronization model are only valid for the exact cutoff value that
they were tuned with. If one uses a lower cutoff, then there would be double counting between the
shower, which now extends to lower scales, and the hadronization model, whose tuning attempted to
absorb those same corrections as well as possible. Conversely, if one used a higher cutoff, there would
be a kind of “dead zone” unreachable by evolution, and where also the hadronization model tuning
did not attempt to absorb the corrections.

To use PYTHIA ’s hadronization model directly with VINCIA , we must therefore take the infrared
cutoff to be at the same scale as the one used for the PYTHIA tuning, and since phase space is not
one-dimensional, we also need to make sure it is in a variablewhich is as close to the one used by
PYTHIA as possible. Contours corresponding to constant values of the PYTHIA 8 evolution variable
were already illustrated in the discussion of evolution variables, fig. 8, and is reproduced in the left-
hand pane of fig. 19 with an explicit cut showing the hadronization scale.

In the dipole-antenna framework, it is not possible to work with exactly the same variable; since
we do not keep the two sides of the dipole-antenna,a andb, separate, it is not possible to use a different
form for the cutoff for the two sides, which is effectively what is done in PYTHIA . The closest we
can come is to apply the cutoff if the smallest of the two scales, p⊥evol,a andp⊥evol,b, is below the
chosen cutoff scale, illustrated on the right pane of fig. 19.This will veto some branchings in VINCIA

that would have been allowed in PYTHIA , but since the PYTHIA radiation functions are not singular
in those regions, and since the kinematics of the corresponding phase-space points are near-collinear,
we do not expect this slight difference to have significant practical consequences.

In addition to the possibility of using VINCIA ’s own variables,2p⊥ ormD, as cutoffs, the option to
use this emulation of the PYTHIA cutoff has therefore also been implemented in VINCIA and should
allow, to a first approximation, to use the PYTHIA hadronization model with any of the VINCIA

evolution settings, without retuning the non-perturbative parameters, as long as one accepts that the
resulting answer will only be good up to perturbative uncertainties. That is, as long as the full VINCIA

uncertainty is estimated, the data should still be compatible with the resulting uncertainty bands.
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Figure 19: Left: the hadronization cutoff inp⊥evol as it is imposed in PYTHIA , with the main plot
showing one side of the evolving dipole and the inset the other. Right: in V INCIA , the whole dipole-
antenna evolves as one entity, and therefore the cutoff mustbe placed likewise. The remaining differ-
ence only contains non-singular contributions from branchings in PYTHIA that accidentally throw the
radiated parton close to the recoiling one.

We note that, in order to obtain acentral V INCIA tune, one would still have to perform a dedi-
cated tuning of the PYTHIA 8 hadronization parameters using the particular VINCIA shower model
for which the tuning is desired. This would also be necessaryat the point when VINCIA ’s formal
level of precision is higher than that of PYTHIA , in which case using hadronization settings tuned
with PYTHIA ’s showers might actually result in incompatibility with the data, beyond the allowed
perturbative uncertainty bands.

A first step towards getting a dedicated VINCIA tuning of the hadronization parameters was taken
in April 2010 when one of the authors acted as host for a 1-week“industry internship” at CERN.
Through the use of a specially developed runtime display forV INCIA , and given some basic explana-
tions about the effect of the different hadronization parameters on the LEP distributions, M. Jeppsson,
a Danish middle-school student, succeeded in making a tune of V INCIA to LEP data, including Thrust,
theC andD parameters, jet rates, identified particle production rates, and the inclusive fractional mo-
mentum distribution,

xparticle =
2Eparticle√

s
. (126)

The final parameters he settled on appeared well motivated and physical, and now constitute the
default in VINCIA . They are given in appendix B for reference. The runtime display, which is based
on ROOT, has subsequently been made publicly available as part of the VINCIA package. To our
knowledge, this study represents the first time “citizen science” has been used for event generator
tuning.

8 Comparison to LEP Data

In the following, we have used version 1.025 of the VINCIA plug-in and version 8.145 of the PYTHIA 8
generator, using default settings unless otherwise specified. Note that for VINCIA , the default settings
include a matching to tree-level matrix elements through third order in QCD (via its MADGRAPH

interface), while PYTHIA only formally includes a first-order matching.
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Figure 20: Comparison to the L3 light-flavor data set [61] (black points) at theZ pole for the1 − T
(left), C (middle), andD (right) event shape variables. VINCIA is shown in thin blue lines, with
shaded light-blue bands representing the perturbative uncertainty estimate. The middle pane on
each plot illustrates the relative composition of the VINCIA uncertainty band. For comparison, the
PYTHIA 8 result is shown with a thick red line with open circles. The yellow bands in the bottom
panels represent the experimental uncertainties on the measurement.

To keep questions of mass effects separate (the implementation of which will be reported on in a
separate paper [55]), we shall here mainly compare to a useful data set presented by the L3 collabora-
tion [61], in which the contributions from light flavors (defined asu, d, s, c) has been separated from
that of events containingb quarks.

Unfortunately, however, the L3 light-flavor data set does not contain jet observables. We therefore
include comparisons also to ALEPH and DELPHI jet observables that include all flavors, using a
preliminary implementation of mass effects in VINCIA [55]. Since the largest correction specific tob
quarks is simply theB meson decay, for which we rely on PYTHIA ’s string hadronization and hadron
decay model, we believe these comparisons are still meaningful, even if we must postpone a full
discussion of them to the follow-up study in ref. [55].

In Fig. 20, we compare default VINCIA and PYTHIA to the L3 light-flavor data for the Thrust
(left) and theC (middle) andD (right) event shape parameters [61]. Dashed vertical linesindicate the
boundaries between the 3- and 4-jet regions for the Thrust and C parameter (the right-most dashed
line on the Thrust plot indicates the boundary with the 5-jetregion). TheD parameter measures the
deviation from planar events and is a 4-jet observable over its entire range. Despite substantial dif-
ferences in the shower modeling, matching level, and hadronization tune parameters, the two models
give almost identical results. Further, since PYTHIA is already giving a very good description of this
data, there is little for the additional matching in VINCIA to improve on here.

Still on Fig. 20, VINCIA ’s uncertainty bands give about a±10% uncertainty over most of the
observable ranges, with larger uncertainties near the edges of the distributions. The middle panels of
the plots show the relative composition of the uncertainty estimates, and inform us that the renormal-
ization scale variation is the dominant source of uncertainty for all the observables, with other sources
only becoming competitive towards the right-hand extremesof the plots. This is an explicit conse-
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Figure 21: Comparison to the L3 light-flavor data set [61] (black points) at theZ pole for the charged
track multiplicity (left) and fractional momentum (right)spectra. VINCIA is shown in thin blue lines,
with shaded light-blue bands representing the perturbative uncertainty estimate. The middle pane on
each plot illustrates the relative composition of the VINCIA uncertainty band. For comparison, the
PYTHIA 8 result is shown with a thick red line with open circles. The yellow bands in the bottom
panels represent the experimental uncertainties on the measurement.

quence of the tree-level matching in VINCIA (by default imposed through third order), which signif-
icantly reduces the allowed range of finite-term, ordering-variable, and subleading-color uncertainty.
The renormalization-scale uncertainty, however, is unaffected by tree-level matching. Although the
scale-dependence-reducing correction described in Section 4.1 is acting to reduce this dependence,
the residual uncertainty from scale variation is still larger than that from any of the other sources.

In Fig. 21, we compare to two infrared-sensitive observables also measured by L3 with light-flavor
tagging, the charged track multiplicity (left) and the fractional momentum distribution (right), with
the latter given by eq. (126). (Note that ref. [61] uses the notation ξ = − lnx.) We conclude that
PYTHIA 8 was probably tuned on slightly different observables, andhence the agreement obtained
with V INCIA is here improved both by giving a slightly narrower multiplicity distribution, with fewer
low-multiplicity events and a slightly softer fragmentation spectrum, with fewer particles carryingx
fractions very close to unity. One also notes that VINCIA ’s estimated uncertainty on the individual
bins of the charged-track multiplicity distribution is much larger than the estimated uncertainty on the
fragmentation spectrum. Recall, however, that VINCIA is only able to vary the perturbative parameters
— variations of the string fragmentation parameters would have to be included here to gain a better
understanding of the full uncertainties. All we can say at this level is that the charged-multiplicity
distribution appears to suffer from a larger perturbative uncertainty than the fragmentation spectrum.

A further set of variables that is interesting in the contextof differential multi-jet production
are the so-called four-jet angles, which were also measuredat LEP. Not having found a public data
repository containing this particular data, however, we instead resorted to extracting the data point
values from the HERWIG++ source code [39], where it is encoded for validation and tuning purposes.
A comparison between this data and default VINCIA and PYTHIA is shown in Fig. 22. Again, it is
clear that PYTHIA itself is already doing a very good job. Since PYTHIA is not matched to 4-jet
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Figure 22: Comparison to DELPHI 4-jet angle measurements (black points) at theZ pole. VINCIA

is shown in thin blue lines, with shaded light-blue bands representing the perturbative uncertainty
estimate. The middle pane on each plot illustrates the relative composition of the VINCIA uncertainty
band. For comparison, the PYTHIA 8 result is shown with a thick red line with open circles. The
yellow bands in the bottom panels represent the experimental uncertainties on the measurement.

matrix elements and also does not contain explicit spin correlations in the shower, this may at first be
surprising. However, PYTHIA does correlate the production and decay planes of gluons in the shower,
and thereby includes the leading effect of gluon polarization. The VINCIA shower, on the other hand,
contains no polarization effects a priori. In VINCIA ’s case, the effective correlations of the four-jet
angles are instead coming from matching to the 4-parton matrix elements, and both codes are able
to describe the 4-jet angles within a roughly 5% margin, which is comparable to the experimental
precision.

Finally, in Fig. 23, we compare to the jet resolutions measured by the ALEPH experiment [62].
Firstly, note that pure PYTHIA is basically able to describe all the distributions, withinthe experimen-
tal accuracy, despite its being matched only toZ → 3 partons. On the one hand, this is good, since it
implies that the PYTHIA 8 shower is delivering a quite good approximation to QCD alsobeyond the
matched orders. On the other hand, it also means that we are not really able to quantify any signifi-
cant improvement by matching using this data alone. This maypartly be due to the data having quite
large uncertainties for hard multi-jet configurations; at least±20% for jet resolutionsln(y45) > −4,
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Figure 23: Comparison to ALEPH jet resolution measurements[62] (black points) at theZ pole. VIN-
CIA is shown in thin blue lines, with shaded light-blue bands representing the perturbative uncertainty
estimate. The middle pane on each plot illustrates the relative composition of the VINCIA uncertainty
band. For comparison, the PYTHIA 8 result is shown with a thick red line with open circles. The
yellow bands in the bottom panels represent the experimental uncertainties on the measurement.
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which corresponds top⊥ scales of order 10 GeV. Thus, this data does not really have enough power to
make precision tests in the hard multi-jet region. This relatively low discriminating power of the hard
multi-jet data will likely be an even greater problem for testing any future one-loop matched schemes.

We see four possible avenues to improve on this situation, requiring various levels of additional
experimental effort. One, combine the hard multi-jet data from the four LEP experiments to increase
the overall discriminating power. Two, re-process the datafocussing on observables more specifically
tailored to project out regions not dominated by leading logs, e.g., by measuringynn+1 while impos-
ing specific constraints on the resolutions of the other(n−1) harder jets in the event. Three, increased
statistics from a future facility such as GigaZ. Four, measurements of hard jet rates and resolutions
outside thee+e− environment, i.e., at hadron colliders, again possibly placing more exclusive restric-
tions on the multi-jet structure of the events. Especially the latter looks promising now in the dawn of
the LHC era, but of course comes at the price of introducing additional uncertainties due to the colored
initial states. LEP is therefore likely to retain its position as our main jet fragmentation laboratory for
the foreseeable future, and with the official closing of the LEP experiments this year, we wish to en-
courage those in a position to do so to keep the LEP data ‘aliveand well’ for future analysis studies
that are likely to involve tests of models far more sophisticated than those that were available ten or
twenty years ago. This makes it necessary to look at data muchmore differentially and/or exclusively
than is possible with, e.g., with the observables that were included in our comparisons here.

9 Conclusions

We have taken the next step in developing the formalism, started in ref. [33], for generic parton
showers based on the dipole-antenna formalism. Evolution equations for a wide class of evolution
variables, kinematics maps, and radiation functions, havebeen presented, including all the necessary
steps to construct an explicit stochastic Markov-chain Monte Carlo code.

The basic ideas behind this shower model are similar to thosebehind the existing ARIADNE pro-
gram [17], to whose properties we make some comparisons. Aside from the more generic formalism,
we also propose some systematic improvements, including suppressed unordered branchings to cover
the hard region of phase space and systematic “next-to-leading-color” (NLC) corrections. We com-
pare explicitly to matrix elements at both leading and subleading color forZ → 4, 5, and6 partons,
to check the validity of our approximations.

We have also presented a new method for matching parton showers to tree-level matrix elements
at the multi-jet level, formulated in a language appropriate to our shower framework. At lowest
order, it is similar to an older scheme by Sjöstrand and collaborators [28, 29], which has recently
been reformulated in a more generic NLO context called POWHEG [30]. Though our scheme is
therefore similar to, and compatible with, these existing methods, we here extend the method to tree-
level matching involving more than one emission. As such, the method is at the same formal level
of precision as the MENLOPS approach [26], but with the difference that the multi-parton matrix
element corrections are here exponentiated, which should both improve the logarithmic accuracy of
our Sudakov factors at the same time as making the approach much less sensitive to so-called matching
scales (scales below which the matrix-element correctionsare switched off). We do still advocate
imposingsomematching scale at high multiplicities, mostly to avoid spending lots of time computing
matrix elements for very soft emissions that the unmatched shower is describing correctly anyway.
For the results reported on in this paper, a matching scale of5 GeV (above the hadronization scale but
well below typical jetpT s) was therefore imposed starting from third order in QCD (corresponding to
Z → 5 partons).
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By default, the generated events form one continuous samplewith no specific separation between
jet multiplicities and with all events having unit weight.

The matched shower algorithm is implemented in the VINCIA plug-in to the PYTHIA 8 Monte
Carlo generator. Apart from its dependence on PYTHIA 8, the plug-in is self-contained with its own
documentation and user-definable parameters. It also includes facilities for linking to the FASTJET

[63] and ROOT packages. In the latter case, a run-time interface has been developed that allows to
display ROOT histograms in real time during the generator run, which can be useful both to give an
immediate sanity check that histograms are being filled correctly, and also to visualize the gradual
improvement in MC statistics over the run. The generated events have similar physical properties
as those generated by standard PYTHIA 8 and can be passed through the latter’s string model for
hadronization, and, e.g., to HEPMC [64] for further processing, e.g., by analysis tools like RIVET [65]
or detector simulation packages.

Finally, we have presented a new efficient and automatable method for the evaluation of uncer-
tainty bands by parton shower generators. The method draws on the unitarity property of shower
calculations to compute several sets of weights for a singlegenerated event sample. This sample can
then be subjected to cuts, hadronized, passed through detector simulations, etc., and the uncertainty
variations can be obtained by filling histograms with each ofthe different weight sets separately at
any stage during the processing. We have implemented this method in VINCIA , to provide an option
for automatic evaluation of renormalization-scale, finite-term, ordering, and subleading-color uncer-
tainties.
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A Comparisons to 2nd Order QCD Matrix Elements

In the following, we present a series of figures comparing dipole-antenna showers — ordered in
various different evolution variables — to matrix elements, on theR4 ratio defined in eq. (83). As in
sec. 3, these plots were made on 20M random points in a flat phase-space scan, using RAMBO [50].
We use the default VINCIA antenna functions and kinematics maps in all cases and only vary the
evolution variable.

On each plot, the quantity on thex axis is a scale characterizing the first emission (2→ 3), while
the quantity on they axis is a scale characterizing the second (3 → 4). Further, the quantity on the
y axis has been normalized to the one on thex axis, so that it really represents the ordering of the
second emission, relative to the first. Thus, phase-space points with hard initial2 → 3 branchings
will lie to the right in the figures, while soft (strongly ordered) initial emissions lie to the left. On the
y axis, points where the second scale is much smaller than the first (i.e., strongly ordered relative to
the first) will be towards the bottom of the plot, while unordered points will be towards the top of the
plot.

To help the eye, we have added a horizontal red line atln(y) = 0 on the plots, dividing the phase
space for the 2nd emission into an ordered part (below the line) and an unordered one. Similarly, the
emphasized black box highlights the region wherex is more than an order of magnitude belowMZ ,
andy more than an order of magnitude belowx, i.e., the doubly-ordered region. Finally, the dotted
lines show contours of constantln(y/M2

Z), or equivalently constanty.
For each evolution variable, we show 4 plots, all with logarithmicx andy scales:

• Top Left: Average PS/ME ratio〈R4〉 vs. thep⊥ scales of the two emissions. On they axis, the
smallest of the two possiblep⊥ scales in the 4-parton configuration. On thex axis, thep⊥ scale
of the corresponding 3-parton configuration.

• Top Right: The RMS width of the left-hand ratio, counting dead zones as having a factor 10
difference (otherwise the log of the ratio would be undefined). This helps illustrate whether a
good average agreement on the left-hand side is just an accident of a wide distribution centered
around unity, or whether the distribution itself is really narrow.

• Bottom Left:Same as top left, but with they axis showing the invariant mass of the two gluons.
This projection is interesting since it allows us to isolatea particular double-collinear limit, as
follows. If m2

gg ∼ m2
Z , then the two gluons are well separated and carry all the energy of the

original partons. This energy can only have been transferred to them by two successive extreme
collinear branchings, one where the quark gives all its energy to the first gluon, and a second
where the antiquark gives all its energy to the other gluon. To check if we get this non-trivial
limit right, the upper edge of this distribution is therefore especially interesting.

• Bottom Right:Same as top left, but with the ordering measure being invariant mass instead of
p⊥. This distribution is complementary to the top left one, showing the same ratio in a slightly
different projection, versus a measure of invariant masses, again in order to check whether any
agreement observed in the above variables persists when doing a different cut through phase
space.

Note that, since we use the default VINCIA antenna functions, which reproduce theZ → 3 matrix
elements, we expect a good agreement even when the first emission is not strongly ordered. It is
therefore mainly the ordering of the second emission with respect to the first that is interesting.
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Phase-Space Ordering
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Figure 24: Phase-space-ordered antenna approximation compared to 2nd order QCD matrix elements.
Note: this roughly corresponds to a mass-ordered parton shower without coherence. Although the
double-soft limit is eventually reached, there is a large overcounting over most of phase space, reflect-
ing a lack of coherence. Also, the double counting extends into the double-collinear region at the top
of the lower left-hand plot. This ordering, therefore, doesnot lead to the correct multiple-collinear
singular limit.
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Transverse-Momentum Ordering (ARIADNE)
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Figure 25: Transverse-Momentum-Ordered antenna approximation compared to 2nd order QCD ma-
trix elements, using the ARIADNE definition of p⊥, which is also the default evolution variable in
V INCIA . Most of the double-counting evident for phase-space ordering has been removed, and the
shower approximation now also gives the correct answer in the double-collinear region at the top of
the lower left-hand plot. The price is the introduction of a dead zone, visible at the top of the upper
left-hand plot. The size of the dead zone in the flat phase-space scan amounts to about 2% of all
sampled points.
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Transverse-Momentum Ordering (PYTHIA)
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Figure 26: Transverse-Momentum-Ordered antenna approximation compared to 2nd order QCD ma-
trix elements, using PYTHIA ’s definition of Transverse Momentum,p⊥evol. Note: the antenna func-
tions and kinematics maps are still the default VINCIA ones, hence these results do not directly corre-
spond to what would be obtained with the PYTHIA program. The PYTHIA p⊥-definition is a bit more
restrictive and increases the size of the dead zone to5% of the sampled points. This in turn leads
to a lower average ratio in some regions. The fact that the RMSdistribution indicates a large spread
of weights even on the edges of the strongly-ordered region (black box) reflects the migration of a
few dead-zone points to this region, due to the mismatch between the ordering variable and thep⊥
definition on the axes.
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Mass-Ordering (VINCIA)
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Figure 27: Mass-Ordered antenna approximation compared to2nd order QCD matrix elements, using
V INCIA ’s definition of Daughter Dipole Mass,mD. This ordering is a bit less restrictive thanp⊥,
hence the size of the dead zone shrinks to about 1% of the sampled points. The tradeoff is that some
overcounting remains over some parts of phase space. As for the PYTHIA p⊥-ordering, the RMS
distribution indicates a quite wide distribution extending inside the doubly-ordered box, which we
interpret as being due to the mapping of some dead-zone points to this region.
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Energy-Ordering (DM)
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Figure 28: Energy-Ordered antenna approximation comparedto 2nd order QCD matrix elements,
using a definition of energy a la Dokshitzer-Marchesini (DM). Although a small dead zone in the
unordered region still exists (0.6% of the sampled points),there remains a very large overcounting
over significant parts of phase space, including the double-collinear region mentioned before, at the
top of the lower left-hand plot. We conclude that this variable does not lead to the correct multiple-
collinear singular limit.
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Modified Energy-Ordering (VINCIA)

E∗2
T1 =

√
8sijsjk(s2ij + s2jk)

s

2
Z

/m2

T1
4pln

-5 -4 -3 -2 -1 0

2 T
1

/p
2 T

2
p

ln

-5

-4

-3

-2

-1

0

1

2

3

4

5

6 qqgg→Z
VINCIA 1.025

ANT = DEF

ARψ   KIN = 

 (strong)2
T2   ORD = E

>4<R

→
 O

rd
er

ed
   

|  
 2

nd
   

|  
 U

no
rd

er
ed

 
←

→ Soft   |   1st Branching   |   Hard ← 

2
Z

/m2

T1
4pln

-5 -4 -3 -2 -1 0

2 T
1

/p
2 T

2
p

ln

-5

-4

-3

-2

-1

0

1

2

3

4

5

6 qqgg→Z
VINCIA 1.025

ANT = DEF

ARψ   KIN = 

 (strong)2
T2   ORD = E

)
4

RMS(R

→
 O

rd
er

ed
   

|  
 2

nd
   

|  
 U

no
rd

er
ed

 
←

→ Soft   |   1st Branching   |   Hard ← 

2
Z

/m2

T1
4pln

-5 -4 -3 -2 -1 0

2 T
1

/4
p

2 gg
m

ln

-5

-4

-3

-2

-1

0

1

2

3

4

5

6 qqgg→Z
VINCIA 1.025

ANT = DEF

ARψ   KIN = 

 (strong)2
T2   ORD = E

>4<R

2
Z

/m2
D1mln

-5 -4 -3 -2 -1 0

2 D
1

/m
2 D

2
m

ln

-5

-4

-3

-2

-1

0

1

2

3

4

5

6 qqgg→Z
VINCIA 1.025

ANT = DEF

ARψ   KIN = 

 (strong)2
T2   ORD = E

>4<R

→
 O

rd
er

ed
   

|  
 2

nd
   

|  
 U

no
rd

er
ed

 
←

→ Soft   |   1st Branching   |   Hard ← 

Figure 29: Energy-Ordered antenna approximation comparedto 2nd order QCD matrix elements,
using a modified definition of energy that makes it explicitlysensitive to collinear emissions. The
dead zone is still quite small, ca. 0.7% of the sampled points, but the approximation is improved with
respect to energy ordering over most of phase space, including the double-collinear region at the top
of the lower left-hand plot.
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Angular-Ordering (HERWIG++)
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Figure 30: Angular-Ordered antenna approximation compared to 2nd order QCD matrix elements,
using the HERWIG++ definition of angles. Note: the antenna functions and kinematics maps are still
the default VINCIA ones, hence these results do not directly correspond to whatwould be obtained
with the HERWIG++ program. The dead zone in this variable amounts to 1% of thesampled points.
Although the double-collinear region appears to be well approximated (see top of lower left-hand
plot), there appears to be a tendency toward untercounting of the double-soft region (box in top left
plot) . The RMS spread is also very large over substantial regions of phase space (top right plot),
extending well beyond the region affected by the dead zone.
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V-Ordering (VINCIA)
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Figure 31: Angular-Ordered antenna approximation compared to 2nd order QCD matrix elements,
using VINCIA ’s modified angular ordering,VS , which is explicitly sensitive to soft and collinear emis-
sions. The overall picture is quite similar to that for the HERWIG++ definition of angular-ordering.
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Smooth Transverse-Momentum Ordering (VINCIA)
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Figure 32: Transverse-momentum-ordered antenna approximation compared to 2nd order QCD ma-
trix elements, using ARIADNE’s definition ofp⊥ and VINCIA ’s smooth suppression factor instead of
the usual strong ordering condition. This corresponds to the default in VINCIA without matching.
(Note: by default, matching toZ → 4 is on in VINCIA , over all of phase space, and hence these ratios
are all equal unity).
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Smooth Mass-Ordering (VINCIA)
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Figure 33: Mass-ordered antenna approximation compared to2nd order QCD matrix elements, us-
ing VINCIA ’s definition ofMD applied as a smooth suppression factor instead of the usual strong
ordering condition. Although the dead zone has been removedwithout introducing a catastrophic
over-counting, the results are less impressive than forp⊥-ordering. Note: the default in VINCIA is
therefore to apply the smooth suppression factor inp⊥ regardless of the actual choice of evolution
variable.
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B Jeppsson Tune Parameters

The following table gives an overview of the parameters usedfor V INCIA and PYTHIA for the results
obtained in this paper. The default settings in PYTHIA 8.145 were obtained by a fit to a large amount
of LEP data, using the RIVET+PROFESSORframework [65,66]. The VINCIA 1.025 parameters were
tuned manually, as reported on in sec. 7. The latter includedthe total charged particle multiplicity and
ξ = − log(x) distributions, mean multiplicities of light mesons and baryons, event shapes (1 − T ,
Major, Minor, C, D, Oblateness), and jet resolution scales (y23, y34, y45, y56) extracted from the
measurements contained in the HEPDATA [67] repository.

Parameter PYTHIA 8.145 Default VINCIA 1.025

Shower Parameters

Evolution Variable p⊥evol p⊥
Renormalization Scale p⊥evol p⊥
αs(MZ) 0.1383 0.139
αs loop order 1 1
Shower Cutoff Variable p⊥evol 2p⊥
Shower Cutoff Scale in GeV 0.5 1.0

String Breakup Parameters

StringZ:aLund 0.30 0.28
StringZ:bLund 0.80 0.55
StringPT:sigma 0.304 0.275
StringPT:enhancedFraction 0.01 0.01
StringPT:enhancedWidth 2.0 2.0

Flavor Parameters

StringFlav:probStoUD 0.19 0.21
StringFlav:mesonUDvector 0.62 0.40
StringFlav:mesonSvector 0.725 0.6
StringFlav:probQQtoQ 0.09 0.079
StringFlav:probSQtoQQ 1.0 1.0
StringFlav:probQQ1toQQ0 0.027 0.035
StringFlav:decupletSup 1.0 1.0
StringFlav:etaSup 0.63 0.60
StringFlav:etaPrimeSup 0.12 0.075
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